There are 7 repositories under regularization topic.
Python for《Deep Learning》,该书为《深度学习》(花书) 数学推导、原理剖析与源码级别代码实现
Neural Network Distiller by Intel AI Lab: a Python package for neural network compression research. https://intellabs.github.io/distiller
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models
Early stopping for PyTorch
Official Pytorch implementation of CutMix regularizer
Training neural models with structured signals.
Implementation of DropBlock: A regularization method for convolutional networks in PyTorch.
Code for reproducing Manifold Mixup results (ICML 2019)
Simple Implementation of many GAN models with PyTorch.
[CVPR 2023] DiffusioNeRF: Regularizing Neural Radiance Fields with Denoising Diffusion Models
Deep Learning Specialization courses by Andrew Ng, deeplearning.ai
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296
机器学习-Coursera-吴恩达- python+Matlab代码实现
Starter code of Prof. Andrew Ng's machine learning MOOC in R statistical language
a Ready-to-use PyTorch Extension of Unofficial CutMix Implementations with more improved performance.
This Repository contains Solutions to the Quizes & Lab Assignments of the Machine Learning Specialization (2022) from Deeplearning.AI on Coursera taught by Andrew Ng, Eddy Shyu, Aarti Bagul, Geoff Ladwig.
Codes and Datasets for paper RecSys'20 "SSE-PT: Sequential Recommendation Via Personalized Transformer" and NurIPS'19 "Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers"
MATLAB package of iterative regularization methods and large-scale test problems. This software is described in the paper "IR Tools: A MATLAB Package of Iterative Regularization Methods and Large-Scale Test Problems" that will be published in Numerical Algorithms, 2018.
Deep Learning Specialization Course by Coursera. Neural Networks, Deep Learning, Hyper Tuning, Regularization, Optimization, Data Processing, Convolutional NN, Sequence Models are including this Course.
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets
[ICLR'21] Neural Pruning via Growing Regularization (PyTorch)
The official code for the paper "Delving Deep into Label Smoothing", IEEE TIP 2021
Programming assignments and lecture notes of the Deep Learning Specialization taught by Andrew Ng and offered by deeplearning.ai on Coursera.
Simple frequency domain full-waveform inversion (FWI) regularized by Sobolev space norm
The tools and syntax you need to code neural networks from day one.
[NeurIPS 2023] The PyTorch Implementation of Scheduled (Stable) Weight Decay.
AI Learning Hub for Machine Learning, Deep Learning, Computer Vision and Statistics
The set of CPU/GPU optimised regularisation modules for iterative image reconstruction and other image processing tasks
An Interactive Approach to Understanding Deep Learning with Keras
ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model Reuse