Published in IEEE Transactions on Image Processing (TIP)
[Paper 📄]
[ArXiv 🌐]
[Homepage 🏠] »
- PyTorch >= 1.0
- Ubuntu 18.04
- Download the model parameters and datasets
- Configure
test.sh
--backbones vgg16+vgg11+res50+res2_50 (Multiple items are connected with '+')
--datasets dataset1+dataset2+dataset3
--param_root param (pretrained model path)
--input_root your_data_root (categorize by subfolders)
--save_root your_output_root
- Run by
sh test.sh
Model parameters | Prediction results | |
---|---|---|
VGG-16 | [Google Drive] [Baidu Pan (bfrn)] | [Google Drive] [Baidu Pan (k01w)] |
VGG-11 | [Google Drive] [Baidu Pan (2a5c)] | [Google Drive] [Baidu Pan (d0t7)] |
ResNet-50 | [Google Drive] [Baidu Pan (o9l2)] | [Google Drive] [Baidu Pan (dqw1)] |
Res2Net-50 | [Google Drive] [Baidu Pan (k761)] | [Google Drive] [Baidu Pan (h3t9)] |
@article{zhang2020bianet,
title={Bilateral attention network for rgb-d salient object detection},
author={Zhang, Zhao and Lin, Zheng and Xu, Jun and Jin, Wenda and Lu, Shao-Ping and Fan, Deng-Ping},
journal={IEEE Transactions on Image Processing (TIP)},
volume={30},
pages={1949-1961},
doi={10.1109/TIP.2021.3049959},
year={2021},
}
If you have any questions, feel free to contact me via zzhang🥳mail😲nankai😲edu😲cn