EIDOSLAB / UNITOPATHO

Dataset of 9536 H&E-stained patches for colorectal polyps classification and adenomas grading | ICIP21 https://doi.org/10.1109/ICIP42928.2021.9506198

Home Page:https://ieee-dataport.org/open-access/unitopatho

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

UNITOPATHO

A Labeled Histopathological Dataset for Colorectal Polyps Classification and Adenoma Dysplasia Grading

Carlo Alberto Barbano1, Daniele Perlo1, Enzo Tartaglione1, Attilio Fiandrotti1, Luca Bertero2, Paola Cassoni2, Marco Grangetto1 | [pdf]

1University of Turin, Computer Science dept.
2University of Turin, Medical Sciences dept.

UniToPatho

UniToPatho is an annotated dataset of 9536 hematoxylin and eosin stained patches extracted from 292 whole-slide images, meant for training deep neural networks for colorectal polyps classification and adenomas grading. The slides are acquired through a Hamamatsu Nanozoomer S210 scanner at 20× magnification (0.4415 μm/px). Each slide belongs to a different patient and is annotated by expert pathologists, according to six classes as follows:

  • NORM - Normal tissue;
  • HP - Hyperplastic Polyp;
  • TA.HG - Tubular Adenoma, High-Grade dysplasia;
  • TA.LG - Tubular Adenoma, Low-Grade dysplasia;
  • TVA.HG - Tubulo-Villous Adenoma, High-Grade dysplasia;
  • TVA.LG - Tubulo-Villous Adenoma, Low-Grade dysplasia.

Downloading the dataset

You can download UniToPatho from IEEE-DataPort

Dataloader and example usage

We provide a PyTorch compatible dataset class and ECVL compatible dataloader. For example usage see Example.ipynb

Citation

If you use this dataset, please make sure to cite the related work:

PWC

@INPROCEEDINGS{barbano2021unitopatho,
  author={Barbano, Carlo Alberto and Perlo, Daniele and Tartaglione, Enzo and Fiandrotti, Attilio and Bertero, Luca and Cassoni, Paola and Grangetto, Marco},
  booktitle={2021 IEEE International Conference on Image Processing (ICIP)}, 
  title={Unitopatho, A Labeled Histopathological Dataset for Colorectal Polyps Classification and Adenoma Dysplasia Grading}, 
  year={2021},
  volume={},
  number={},
  pages={76-80},
  doi={10.1109/ICIP42928.2021.9506198}
}

About

Dataset of 9536 H&E-stained patches for colorectal polyps classification and adenomas grading | ICIP21 https://doi.org/10.1109/ICIP42928.2021.9506198

https://ieee-dataport.org/open-access/unitopatho

License:MIT License


Languages

Language:Jupyter Notebook 98.7%Language:Python 1.2%Language:Dockerfile 0.0%