About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Negative binomial distribution constructor.
npm install @stdlib/stats-base-dists-negative-binomial-ctor
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var NegativeBinomial = require( '@stdlib/stats-base-dists-negative-binomial-ctor' );
Returns a negative binomial distribution object.
var nbinomial = new NegativeBinomial();
var mu = nbinomial.mean;
// returns 1.0
By default, r = 1.0
and p = 0.5
. To create a distribution having a different r
(number of trials until experiment is stopped) and p
(success probability), provide the corresponding arguments.
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var mu = nbinomial.mean;
// returns 16.0
A negative binomial distribution object has the following properties and methods...
Number of trials of the distribution. r
must be a positive number.
var nbinomial = new NegativeBinomial();
var r = nbinomial.r;
// returns 1.0
nbinomial.r = 4.5;
r = nbinomial.r;
// returns 4.5
Success probability of the distribution. p
must be a number between 0 and 1.
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var p = nbinomial.p;
// returns 0.2
nbinomial.p = 0.7;
p = nbinomial.p;
// returns 0.7
Returns the excess kurtosis.
var nbinomial = new NegativeBinomial( 12.0, 0.4 );
var kurtosis = nbinomial.kurtosis;
// returns ~0.522
Returns the expected value.
var nbinomial = new NegativeBinomial( 12.0, 0.4 );
var mu = nbinomial.mean;
// returns ~18.0
Returns the mode.
var nbinomial = new NegativeBinomial( 12.0, 0.4 );
var mode = nbinomial.mode;
// returns 16.0
Returns the skewness.
var nbinomial = new NegativeBinomial( 12.0, 0.4 );
var skewness = nbinomial.skewness;
// returns ~0.596
Returns the standard deviation.
var nbinomial = new NegativeBinomial( 12.0, 0.4 );
var s = nbinomial.stdev;
// returns ~6.708
Returns the variance.
var nbinomial = new NegativeBinomial( 12.0, 0.4 );
var s2 = nbinomial.variance;
// returns ~45.0
Evaluates the cumulative distribution function (CDF).
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var y = nbinomial.cdf( 3.5 );
// returns ~0.033
Evaluates the natural logarithm of the probability mass function (PMF).
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var y = nbinomial.logpmf( 4.0 );
// returns ~-3.775
Evaluates the moment-generating function (MGF).
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var y = nbinomial.mgf( 0.1 );
// returns ~1.66
Evaluates the probability mass function (PMF).
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var y = nbinomial.pmf( 4.0 );
// returns ~0.023
Evaluates the quantile function at probability p
.
var nbinomial = new NegativeBinomial( 4.0, 0.2 );
var y = nbinomial.quantile( 0.5 );
// returns 15.0
y = nbinomial.quantile( 1.9 );
// returns NaN
var NegativeBinomial = require( '@stdlib/stats-base-dists-negative-binomial-ctor' );
var nbinomial = new NegativeBinomial( 10.0, 0.4 );
var mu = nbinomial.mean;
// returns 15.0
var mode = nbinomial.mode;
// returns 13.0
var s2 = nbinomial.variance;
// returns ~37.5
var y = nbinomial.cdf( 8.0 );
// returns ~0.135
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Copyright © 2016-2024. The Stdlib Authors.