Public code and model of ARiADNE: A Reinforcement learning approach using Attention-based Deep Networks for Exploration, which is accepted for the oral presentation at ICRA 2023.
python == 3.10.8
pytorch == 1.12.0
ray == 2.1.0
scikit-image == 0.19.3
scikit-learn == 1.2.0
scipy == 1.9.3
matplotlib == 3.6.2
tensorboard == 2.11.0
- Set training parameters in
parameters.py
. - Run
python driver.py
- Set parameters in
test_parameters.py
. - Run
test_driver.py
parameters.py
Training parameters.driver.py
Driver of training program, maintain & update the global network.runner.py
Wrapper of the local network.worker.py
Interact with environment and collect episode experience.model.py
Define attention-based network.env.py
Autonomous exploration environment.graph_generator.py
Generate and update the collision-free graph.node.py
Initialize and update nodes in the coliision-free graph.sensor.py
Simulate the sensor model of Lidar./model
Trained model./DungeonMaps
Maps of training environments provided by Chen et al..
If you find our work helpful or enlightening, feel free to cite our paper:
@INPROCEEDINGS{cao2023ariadne,
author={Cao, Yuhong and Hou, Tianxiang and Wang, Yizhuo and Yi, Xian and Sartoretti, Guillaume},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
title={ARiADNE: A Reinforcement learning approach using Attention-based Deep Networks for Exploration},
year={2023},
volume={},
number={},
pages={10219-10225},
doi={10.1109/ICRA48891.2023.10160565}}
Yuhong Cao
Tianxiang Hou
Yizhuo Wang
Xian Yi
Guillaume Sartoretti