humanpose1 / learning3d

This is a complete package of recent deep learning methods for 3D point clouds in pytorch (with pretrained models).

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Learning3D: A Modern Library for Deep Learning on 3D Point Clouds Data.

Documentation | Blog | Demo

Learning3D is an open-source library that supports the development of deep learning algorithms that deal with 3D data. The Learning3D exposes a set of state of art deep neural networks in python. A modular code has been provided for further development. We welcome contributions from the open-source community.

Available Computer Vision Algorithms in Learning3D

Sr. No. Tasks Algorithms
1 Classification PointNet, DGCNN, PPFNet
2 Segmentation PointNet, DGCNN
3 Reconstruction Point Completion Network (PCN)
4 Registration PointNetLK, PCRNet, DCP, PRNet, RPM-Net
5 Flow Estimation FlowNet3D

Available Pretrained Models

  1. PointNet
  2. PCN
  3. PointNetLK
  4. PCRNet
  5. DCP
  6. PRNet
  7. FlowNet3D
  8. RPM-Net (clean-trained.pth, noisy-trained.pth, partial-pretrained.pth)

Available Datasets

  1. ModelNet40

Available Loss Functions

  1. Classification Loss (Cross Entropy)
  2. Registration Losses (FrobeniusNormLoss, RMSEFeaturesLoss)
  3. Distance Losses (Chamfer Distance, Earth Mover's Distance)

Technical Details

Supported OS

  1. Ubuntu 16.04
  2. Ubuntu 18.04
  3. Linux Mint

Requirements

  1. CUDA 10.0 or higher
  2. Pytorch 1.3 or higher

How to use this library?

Important Note: Clone this repository in your project. Please don't add your codes in "learning3d" folder.

  1. All networks are defined in the module "models".
  2. All loss functions are defined in the module "losses".
  3. Data loaders are pre-defined in data_utils/dataloaders.py file.
  4. All pretrained models are provided in learning3d/pretrained folder.

Documentation

B: Batch Size, N: No. of points and C: Channels.

Use of Point Embedding Networks:

from learning3d.models import PointNet, DGCNN, PPFNet
pn = PointNet(emb_dims=1024, input_shape='bnc', use_bn=False)
dgcnn = DGCNN(emb_dims=1024, input_shape='bnc')
ppf = PPFNet(features=['ppf', 'dxyz', 'xyz'], emb_dims=96, radius='0.3', num_neighbours=64)

Sr. No. Variable Data type Shape Choices Use
1. emb_dims Integer Scalar 1024, 512 Size of feature vector for the each point
2. input_shape String - 'bnc', 'bcn' Shape of input point cloud
3. output tensor BxCxN - High dimensional embeddings for each point
4. features List of Strings - ['ppf', 'dxyz', 'xyz'] Use of various features
5. radius Float Scalar 0.3 Radius of cluster for computing local features
6. num_neighbours Integer Scalar 64 Maximum number of points to consider per cluster

Use of Classification / Segmentation Network:

from learning3d.models import Classifier, PointNet, Segmentation
classifier = Classifier(feature_model=PointNet(), num_classes=40)
seg = Segmentation(feature_model=PointNet(), num_classes=40)

Sr. No. Variable Data type Shape Choices Use
1. feature_model Object - PointNet / DGCNN Point cloud embedding network
2. num_classes Integer Scalar 10, 40 Number of object categories to be classified
3. output tensor Classification: Bx40, Segmentation: BxNx40 10, 40 Probabilities of each category or each point

Use of Registration Networks:

from learning3d.models import PointNet, PointNetLK, DCP, iPCRNet, PRNet, PPFNet, RPMNet
pnlk = PointNetLK(feature_model=PointNet(), delta=1e-02, xtol=1e-07, p0_zero_mean=True, p1_zero_mean=True, pooling='max')
dcp = DCP(feature_model=PointNet(), pointer_='transformer', head='svd')
pcrnet = iPCRNet(feature_moodel=PointNet(), pooling='max')
rpmnet = RPMNet(feature_model=PPFNet())

Sr. No. Variable Data type Choices Use Algorithm
1. feature_model Object PointNet / DGCNN Point cloud embedding network PointNetLK
2. delta Float Scalar Parameter to calculate approximate jacobian PointNetLK
3. xtol Float Scalar Check tolerance to stop iterations PointNetLK
4. p0_zero_mean Boolean True/False Subtract mean from template point cloud PointNetLK
5. p1_zero_mean Boolean True/False Subtract mean from source point cloud PointNetLK
6. pooling String 'max' / 'avg' Type of pooling used to get global feature vectror PointNetLK
7. pointer_ String 'transformer' / 'identity' Choice for Transformer/Attention network DCP
8. head String 'svd' / 'mlp' Choice of module to estimate registration params DCP

Use of Point Completion Network:

from learning3d.models import PCN
pcn = PCN(emb_dims=1024, input_shape='bnc', num_coarse=1024, grid_size=4, detailed_output=True)

Sr. No. Variable Data type Choices Use
1. emb_dims Integer 1024, 512 Size of feature vector for each point
2. input_shape String 'bnc' / 'bcn' Shape of input point cloud
3. num_coarse Integer 1024 Shape of output point cloud
4. grid_size Integer 4, 8, 16 Size of grid used to produce detailed output
5. detailed_output Boolean True / False Choice for additional module to create detailed output point cloud

Use of Flow Estimation Network:

from learning3d.models import FlowNet3D
flownet = FlowNet3D()

Use of Data Loaders:

from learning3d.data_utils import ModelNet40Data, ClassificationData, RegistrationData, FlowData
modelnet40 = ModelNet40Data(train=True, num_points=1024, download=True)
classification_data = ClassificationData(data_class=ModelNet40Data())
registration_data = RegistrationData(algorithm='PointNetLK', data_class=ModelNet40Data(), partial_source=False, partial_template=False, noise=False)
flow_data = FlowData()

Sr. No. Variable Data type Choices Use
1. train Boolean True / False Split data as train/test set
2. num_points Integer 1024 Number of points in each point cloud
3. download Boolean True / False If data not available then download it
4. data_class Object - Specify which dataset to use
5. algorithm String 'PointNetLK', 'PCRNet', 'DCP', 'iPCRNet' Algorithm used for registration
6. partial_source Boolean True / False Create partial source point cloud
7. partial_template Boolean True / False Create partial template point cloud
8. noise Boolean True / False Add noise in source point cloud

Use of Loss Functions:

from learning3d.losses import RMSEFeaturesLoss, FrobeniusNormLoss, ClassificationLoss, EMDLoss, ChamferDistanceLoss
rmse = RMSEFeaturesLoss()
fn_loss = FrobeniusNormLoss()
classification_loss = ClassificationLoss()
emd = EMDLoss()
cd = ChamferDistanceLoss()

Sr. No. Loss Type Use
1. RMSEFeaturesLoss Used to find root mean square value between two global feature vectors of point clouds
2. FrobeniusNormLoss Used to find frobenius norm between two transfromation matrices
3. ClassificationLoss Used to calculate cross-entropy loss
4. EMDLoss Earth Mover's distance between two given point clouds
5. ChamferDistanceLoss Chamfer's distance between two given point clouds

To run codes from examples:

  1. Copy the file from "examples" folder outside of the directory "learning3d"
  2. Now, run the file. (ex. python test_pointnet.py)
  • Your Directory/Location
    • learning3d
    • test_pointnet.py

References:

  1. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
  2. Dynamic Graph CNN for Learning on Point Clouds
  3. PPFNet: Global Context Aware Local Features for Robust 3D Point Matching
  4. PointNetLK: Robust & Efficient Point Cloud Registration using PointNet
  5. PCRNet: Point Cloud Registration Network using PointNet Encoding
  6. Deep Closest Point: Learning Representations for Point Cloud Registration
  7. PRNet: Self-Supervised Learning for Partial-to-Partial Registration
  8. FlowNet3D: Learning Scene Flow in 3D Point Clouds
  9. PCN: Point Completion Network
  10. RPM-Net: Robust Point Matching using Learned Features
  11. 3D ShapeNets: A Deep Representation for Volumetric Shapes

About

This is a complete package of recent deep learning methods for 3D point clouds in pytorch (with pretrained models).

License:MIT License


Languages

Language:Python 75.7%Language:Cuda 15.9%Language:C++ 8.4%