cleoag / PINTO_model_zoo

A repository for storing models that have been inter-converted between various frameworks. Supported frameworks are TensorFlow, PyTorch, ONNX, OpenVINO, TFJS, TFTRT, TensorFlowLite (Float32/16/INT8), EdgeTPU, CoreML.

Home Page:https://qiita.com/PINTO

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

PINTO_model_zoo

CodeQL

Please read the contents of the LICENSE file located directly under each folder before using the model. My model conversion scripts are released under the MIT license, but the license of the source model itself is subject to the license of the provider repository.

A repository for storing models that have been inter-converted between various frameworks. Supported frameworks are TensorFlow, PyTorch, ONNX, OpenVINO, TFJS, TFTRT, TensorFlowLite (Float32/16/INT8), EdgeTPU, CoreML.

TensorFlow Lite, OpenVINO, CoreML, TensorFlow.js, TF-TRT, MediaPipe, ONNX [.tflite, .h5, .pb, saved_model, tfjs, tftrt, mlmodel, .xml/.bin, .onnx]

I have been working on quantization of various models as a hobby, but I have skipped the work of making sample code to check the operation because it takes a lot of time. I welcome a pull request from volunteers to provide sample code. 😄

[Note Jan 05, 2020] Currently, the MobileNetV3 backbone model and the Full Integer Quantization model do not return correctly.

[Note Jan 08, 2020] If you want the best performance with RaspberryPi4/3, install Ubuntu 19.10 aarch64 (64bit) instead of Raspbian armv7l (32bit). The official Tensorflow Lite is performance tuned for aarch64. On aarch64 OS, performance is about 4 times higher than on armv7l OS.

My article

List of pre-quantized models

* WQ = Weight Quantization ** OV = OpenVINO IR *** CM = CoreML **** DQ = Dynamic Range Quantization

1. Image Classification

No. Model Name Link FP32 FP16 INT8 DQ TPU WQ OV CM TFJS TF-TRT ONNX Remarks
004 Efficientnet ■■■
010 Mobilenetv3 ■■■
011 Mobilenetv2 ■■■
016 Efficientnet-lite ■■■
070 age-gender-recognition ■■■
083 Person_Reidentification ■■■ 248,277,286,287,288,300
087 DeepSort ■■■
124 person-attributes-recognition-crossroad-0230 ■■■
125 person-attributes-recognition-crossroad-0234 ■■■
126 person-attributes-recognition-crossroad-0238 ■■■
175 face-recognition-resnet100-arcface-onnx ■■■ RGB/BGR,112x112,[1,512]
187 vehicle-attributes-recognition-barrier-0039 ■■■ 72x72
188 vehicle-attributes-recognition-barrier-0042 ■■■ 72x72
191 anti-spoof-mn3 ■■■ 128x128
192 open-closed-eye-0001 ■■■ 32x32
194 face_recognizer_fast ■■■ 112x112
195 person_reid_youtu ■■■ 256x128
199 NSFW ■■■ 224x224
244 FINNger ■■■ 96x96
256 SFace ■■■ 112x112
257 PiCANet ■■■ BDDA,SAGE/224x224
259 Emotion_FERPlus ■■■ 64x64
290 AdaFace ■■■ 112x112
317 MobileOne ■■■ 224x224

2. 2D Object Detection

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
002 Mobilenetv3-SSD ■■■
006 Mobilenetv2-SSDlite ■■■
008 Mask_RCNN_Inceptionv2 ■■■
018 EfficientDet ■■■
023 Yolov3-nano ■■■
024 Yolov3-lite ■■■
031 Yolov4 ■■■
034 SSD_Mobilenetv2_mnasfpn ■■■
038 SSDlite_MobileDet_edgetpu ■■■
039 SSDlite_MobileDet_cpu ■■■
042 Centernet ■■■
045 SSD_Mobilenetv2_oid_v4 ■■■
046 Yolov4-tiny ■■■
047 SpineNetMB_49 ■■■ Mobile RetinaNet
051 East_Text_Detection ■■■
054 KNIFT ■■■ MediaPipe
056 TextBoxes++ with dense blocks, separable convolution and Focal Loss ■■■
058 keras-retinanet ■■■ resnet50_coco_best_v2.1.0.h5,320x320
059 Yolov5 ■■■
072 NanoDet ■■■ issue #274
073 RetinaNet ■■■
074 Yolact ■■■
085 Yolact_Edge ■■■ 21/10/05 new MobileNetV2(550x550)
089 DETR ■■■ 256x256
103 EfficientDet_lite ■■■ lite0,lite1,lite2,lite3,lite4
116 DroNet ■■■ DroNet,DroNetV3
123 YOLOR ■■■ ssss_s2d/320x320,640x640,960x960,1280x1280
132 YOLOX ■■■ nano,tiny,s,m,l,x/256x320,320x320,416x416,480x640,544x960,736x1280,1088x1920
143 RAPiD ■■■ Fisheye, cepdof/habbof/mw_r, 608x608/1024x1024
145 text_detection_db ■■■ 480x640
151 object_detection_mobile_object_localizer ■■■ 192x192
169 spaghettinet_edgetpu ■■■ 320x320,S/M/L
174 PP-PicoDet ■■■ S/M/L,320x320/416x416/640x640
178 vehicle-detection-0200 ■■■ 256x256,PriorBoxClustered->ndarray(0.npy)
179 person-detection-0202 ■■■ 512x512,PriorBoxClustered->ndarray(0.npy)
180 YOLOv5-Lite ■■■ S:640x640,TensorRT rtx3070 Float16
183 pedestrian-detection-adas-0002 ■■■ 384x672,PriorBox->ndarray(0.npy)
184 pedestrian-and-vehicle-detector-adas-0001 ■■■ 384x672,PriorBox->ndarray(0.npy)
185 person-vehicle-bike-detection-crossroad-0078 ■■■ 1024x1024,PriorBoxClustered->ndarray(0.npy)
186 person-vehicle-bike-detection-crossroad-1016 ■■■ 512x512,PriorBoxClustered->ndarray(0.npy)
189 vehicle-license-plate-detection-barrier-0106 ■■■ 300x300,PriorBoxClustered->ndarray(0.npy)
190 person-detection-asl-0001 ■■■ 320x320
197 yolact-resnet50-fpn ■■■ RGB,550x550
198 YOLOF ■■■ BGR/RGB,608x608
221 YOLACT-PyTorch ■■■ 180x320,240x320,320x480,480x640,544x544,720x1280
226 CascadeTableNet ■■■ General,320x320 only
262 ByteTrack ■■■ YOLOX/nano,tiny,s,m,l,x,mot17,ablation/128x320,192x320,192x448,192x640,256x320,256x448,256x640,384x640,512x1280,736x1280
264 object_localization_network ■■■ 180x320,240x320,270x480,360x480,360x480,360x640,480x640,720x1280
307 YOLOv7 ■■■ YOLOv7,YOLOv7-tiny
308 FastestDet ■■■ 180x320,256x320,320x480,352x352,352x640,480x640,736x1280
329 YOLOX-PAI ■■■

3. 3D Object Detection

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
036 Objectron ■■■ MediaPipe/camera,chair,chair_1stage,cup,sneakers,sneakers_1stage,ssd_mobilenetv2_oidv4_fp16
063 3D BoundingBox estimation for autonomous driving ■■■ YouTube
107 SFA3D ■■■
263 EgoNet ■■■
321 DID-M3D ■■■

4. 2D/3D Face Detection

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
025 Head_Pose_Estimation ■■■
030 BlazeFace ■■■ MediaPipe
032 FaceMesh ■■■ MediaPipe
040 DSFD_vgg ■■■
041 DBFace ■■■ MobileNetV2/V3, 320x320,480x640,640x960,800x1280
043 Face_Landmark ■■■
049 Iris_Landmark ■■■ MediaPipe
095 CenterFace ■■■
096 RetinaFace ■■■
106 WHENet ■■■ Real-time Fine-Grained Estimation for Wide Range Head Pose
129 SCRFD ■■■ All types
130 YOLOv5_Face ■■■ yolov5n_0.5,yolov5n_face,yolov5s_face/256x320,480x640,736x1280
134 head-pose-estimation-adas-0001 ■■■ 60x60
144 YuNet ■■■ 120x160
227 face-detection-adas-0001 ■■■ 384x672,PriorBox->ndarray(0.npy)
250 Face-Mask-Detection ■■■ PriorBox->ndarray(0.npy)
282 face_landmark_with_attention ■■■ MediaPipe,192x192
289 face-detection-0100 ■■■ 256x256,PriorBoxClustered->ndarray(0.npy)
293 Lightweight-Head-Pose-Estimation ■■■ HeadPose, 224x224
300 6DRepNet ■■■ 6D HeadPose, 224x224
301 YOLOv4_Face ■■■ 480x640
302 SLPT ■■■ decoder=6/12,256x256
303 FAN ■■■ Face Alignment,128x128/256x256
304 SynergyNet ■■■ 6D HeadPose,224x224
305 DMHead ■■■ 6D HeadPose,Multi-Model-Fused,224x224,PINTO's custom models
311 HHP-Net ■■■ 6D HeadPose,No-LICENSE
319 ACR-Loss ■■■ Face Alignment
322 YOLOv7_Head ■■■ PINTO's custom models

5. 2D/3D Hand Detection

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
027 Minimal-Hand ■■■
033 Hand_Detection_and_Tracking ■■■ MediaPipe
094 hand_recrop ■■■ MediaPipe

6. 2D/3D Human Pose Estimation

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
003 Posenet ■■■
007 Mobilenetv2_Pose_Estimation ■■■
029 Human_Pose_Estimation_3D ■■■ RGB,180x320,240x320,360x640,480x640,720x1280
053 BlazePose ■■■ MediaPipe,Integrate 058_BlazePose_Full_Keypoints
065 ThreeDPoseUnityBarracuda ■■■ YouTube
080 tf_pose_estimation ■■■
084 EfficientPose ■■■ SinglePose
088 Mobilenetv3_Pose_Estimation ■■■
115 MoveNet ■■■ lightning,thunder
137 MoveNet_MultiPose ■■■ lightning,192x192,192x256,256x256,256x320,320x320,480x640,720x1280,1280x1920
156 MobileHumanPose ■■■ 3D
157 3DMPPE_POSENET ■■■ 3D,192x192/256x256/320x320/416x416/480x640/512x512
265 PoseAug ■■■ 2D->3D/GCN,MLP,STGCN,VideoPose/Nx16x2
268 Lite-HRNet ■■■ COCO,MPII/Top-Down
269 Higher-HRNet ■■■ 192x320,256x320,320x480,384x640,480x640,512x512,576x960,736x1280/Bottom-Up
271 HRNet ■■■ COCO,MPII/Top-Down

7. Depth Estimation from Monocular/Stereo Images

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
009 Multi-Scale Local Planar Guidance for Monocular Depth Estimation ■■■
014 tf-monodepth2 ■■■
028 struct2depth ■■■
064 Dense Depth ■■■
066 Footprints ■■■
067 MiDaS ■■■
081 MiDaS v2 ■■■
135 CoEx ■■■ WIP, onnx/OpenVINO only
142 HITNET ■■■ WIP issue1,issue2,flyingthings_finalpass_xl/eth3d/middlebury_d400,120x160/240x320/256x256/480x640/720x1280
146 FastDepth ■■■ 128x160,224x224,256x256,256x320,320x320,480x640,512x512,768x1280
147 PackNet-SfM ■■■ ddad/kitti,Convert all ResNet18 backbones only
148 LapDepth ■■■ kitti/nyu,192x320/256x320/368x640/480x640/720x1280
149 depth_estimation ■■■ nyu,180x320/240x320/360x640/480x640/720x1280
150 MobileStereoNet ■■■ WIP. Conversion script only.
153 MegaDepth ■■■ 192x256,384x512
158 HR-Depth ■■■
159 EPCDepth ■■■
160 msg_chn_wacv20 ■■■ 192x320,240x320,256x256,352x480,368x480,368x640,480x640,720x1280,1280x1920
162 PyDNet ■■■
164 MADNet ■■■ Real-time-self-adaptive-deep-stereo (perform only inference mode, no-backprop, kitti)
165 RealtimeStereo ■■■ 180x320,216x384,240x320,270x480,360x480,360x640,480x640,720x1280
166 Insta-DM ■■■ 192x320,256x320,256x832,384x640,480x640,736x1280
167 DPT ■■■ dpt-hybrid,480x640,ViT,ONNX 96x128/256x320/384x480/480x640
173 MVDepthNet ■■■ 256x320
202 stereoDNN ■■■ NVSmall_321x1025,NVTiny_161x513,ResNet18_321x1025,ResNet18_2d_257x513
203 SRHNet ■■■ finetune2_kitti/sceneflow,maxdisp192,320x480/480x640
210 SC_Depth_pl ■■■ kitti/nyu,320x320,320x480,480x640,640x800
211 Lac-GwcNet ■■■ kitti,240x320,320x480,480x640,720x1280
219 StereoNet ■■■ Left/180x320,240x320,320x480,360x640,480x640
235 W-Stereo-Disp ■■■ Kitti,Sceneflow/320x480,384x576,480x640
236 A-TVSNet ■■■ Stereo only/192x320,256x320,320x480,480x640
239 CasStereoNet ■■■ Stereo KITTI only/256x320,384x480,480x640,736x1280
245 GLPDepth ■■■ Kitti,NYU/192x320,320x480,384x640,480x640,736x1280,non-commercial use only
258 TinyHITNet ■■■ 180x320,240x320,300x400,360x640,384x512,480x640,720x960,720x1280
266 ACVNet ■■■ sceneflow,kitti/240x320,320x480,384x640,480x640,544x960,720x1280
280 GASDA ■■■ No-LICENSE
284 CREStereo ■■■ ITER2,ITER5,ITER10,ITER20/240x320,320x480,360x640,480x640,480x640,720x1280
292 Graft-PSMNet ■■■ 192x320,240x320,320x480,368x640,480x640,720x1280
294 FSRE-Depth ■■■ 192x320,256x320,320x480,368x640,480x640,736x1280
296 MGNet ■■■ 240x320,360x480,360x640,360x1280,480x640,720x1280
312 NeWCRFs ■■■ 384x384,384x576,384x768,384x960,576x768,768x1344
313 PyDNet2 ■■■ Mono-Depth
327 EMDC ■■■ RGB+SarseDepth

8. Semantic Segmentation

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
001 deeplabv3 ■■■
015 Faster-Grad-CAM ■■■
020 EdgeTPU-Deeplab ■■■
021 EdgeTPU-Deeplab-slim ■■■
026 Mobile-Deeplabv3-plus ■■■
035 BodyPix ■■■ MediaPipe,MobileNet0.50/0.75/1.00,ResNet50
057 BiSeNetV2 ■■■
060 Hair Segmentation ■■■ WIP,MediaPipe
061 U^2-Net ■■■
069 ENet ■■■ Cityscapes,512x1024
075 ERFNet ■■■ Cityscapes,256x512,384x786,512x1024
078 MODNet ■■■ 128x128,192x192,256x256,512x512
082 MediaPipe_Meet_Segmentation ■■■ MediaPipe,128x128,144x256,96x160
104 DeeplabV3-plus ■■■ cityscapes,200x400,400x800,800x1600
109 Selfie_Segmentation ■■■ 256x256
136 road-segmentation-adas-0001 ■■■
138 BackgroundMattingV2 ■■■ 720x1280,2160x4096
181 models_edgetpu_checkpoint_and_tflite_vision_segmentation-edgetpu_tflite_default_argmax ■■■
182 models_edgetpu_checkpoint_and_tflite_vision_segmentation-edgetpu_tflite_fused_argmax ■■■
196 human_segmentation_pphumanseg ■■■
201 CityscapesSOTA ■■■ 180x320,240x320,360x640,480x640,720x1280
206 Matting ■■■ PaddleSeg/modnet_mobilenetv2,modnet_hrnet_w18,modnet_resnet50_vd/256x256,384x384,512x512,640x640
228 Fast-SCNN ■■■ 192x384,384x384,384x576,576x576,576x768,768x1344
238 SUIM-Net ■■■ RSB,VGG/240x320,256x320,320x480,360x640,384x480,384x640,480x640,720x1280
242 RobustVideoMatting ■■■ Mbnv3,ResNet50/192x320,240x320,320x480,384x640,480x640,720x1280,1088x1920,2160x3840
246 SqueezeSegV3 ■■■ 21,53/180x320,240x320,320x480,360x640,480x640,720x1280
267 LIOT ■■■ 180x320,240x320,320x480,360x640,480x640,540x960,720x1280,1080x1920
287 Topformer ■■■ Tiny,Small,Base/448x448,512x512
295 SparseInst ■■■ r50_giam_aug/192x384,384x384,384x576,384x768,576x576,576x768,768x1344
299 DGNet ■■■
313 IS-Net ■■■ 180x320,240x320,320x480,360x640,480x640,720x1280,1080x1920,1080x2048,2160x4096,N-batch,Dynamic-HeightxWidth

9. Anomaly Detection

No. Model Name Link FP32 FP16 INT8 TPU WQ OV CM TFJS TF-TRT ONNX Remarks
005 One_Class_Anomaly_Detection ■■■
099 Efficientnet_Anomaly_Detection_Segmentation ■■■

10. Artistic

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
017 Artistic-Style-Transfer ■■■
019 White-box-Cartoonization ■■■
037 First_Neural_Style_Transfer ■■■
044 Selfie2Anime ■■■
050 AnimeGANv2 ■■■
062 Facial Cartoonization ■■■
068 Colorful_Image_Colorization ■■■ experimental
101 arbitrary_image_stylization ■■■ magenta
113 Anime2Sketch ■■■
161 EigenGAN-Tensorflow ■■■ Anime,CelebA
193 CoCosNet ■■■ RGB,256x256

11. Super Resolution

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
012 Fast_Accurate_and_Lightweight_Super-Resolution ■■■
022 Learning_to_See_Moving_Objects_in_the_Dark ■■■
071 Noise2Noise ■■■ srresnet/clear only
076 Deep_White_Balance ■■■
077 ESRGAN ■■■ 50x50->x4, 100x100->x4
079 MIRNet ■■■ Low-light Image Enhancement/40x40,80x80,120x120,120x160,120x320,120x480,120x640,120x1280,180x480,180x640,180x1280,180x320,240x320,240x480,360x480,360x640,480x640,720x1280
086 Defocus Deblurring Using Dual-Pixel ■■■
090 Ghost-free_Shadow_Removal ■■■ 256x256
111 SRN-Deblur ■■■ 240x320,480x640,720x1280,1024x1280
112 DeblurGANv2 ■■■ inception/mobilenetv2:256x256,320x320,480x640,736x1280,1024x1280
114 Two-branch-dehazing ■■■ 240x320,480x640,720x1280
133 Real-ESRGAN ■■■ 16x16,32x32,64x64,128x128,240x320,256x256,320x320,480x640
152 DeepLPF ■■■
170 Learning-to-See-in-the-Dark ■■■ sony/fuji, 240x320,360x480,360x640,480x640
171 Fast-SRGAN ■■■ 120x160,128x128,240x320,256x256,480x640,512x512
172 Real-Time-Super-Resolution ■■■ 64x64,96x96,128x128,256x256,240x320,480x640
176 StableLLVE ■■■ Low-light Image/Video Enhancement,180x240,240x320,360x640,480x640,720x1280
200 AGLLNet ■■■ Low-light Image/Video Enhancement,256x256,256x384,384x512,512x640,768x768,768x1280
204 HINet ■■■ DeBlur,DeNoise,DeRain/256x320,320x480,480x640
205 MBLLEN ■■■ Low-light Image/Video Enhancement,180x320,240x320,360x640,480x640,720x1280
207 GLADNet ■■■ Low-light Image/Video Enhancement,180x320,240x320,360x640,480x640,720x1280,No-LICENSE
208 SAPNet ■■■ DeRain,180x320,240x320,360x640,480x640,720x1280
209 MSBDN-DFF ■■■ Dehazing,192x320,240x320,320x480,384x640,480x640,720x1280,No-LICENSE
212 GFN ■■■ DeBlur+SuperResolution,x4/64x64,96x96,128x128,192x192,240x320,256x256,480x640,720x1280
213 TBEFN ■■■ Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280
214 EnlightenGAN ■■■ Low-light Image Enhancement/192x320,240x320,320x480,368x640,480x640,720x1280
215 AOD-Net ■■■ DeHazing/180x320,240x320,320x480,360x640,480x640,720x1280
216 Zero-DCE-TF ■■■ Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280
217 RUAS ■■■ Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
218 DSLR ■■■ Low-light Image Enhancement/256x256,256x384,256x512,384x640,512x640,768x1280
220 HEP ■■■ Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640
222 LFT ■■■ Transformer/2x,4x/65x65
223 DA_dahazing ■■■ DeHazing/192x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
224 Y-net ■■■ DeHazing/192x320,240x320,320x480,384x640,480x640,720x1280
225 DRBL ■■■ DeHazing/192x320,240x320,320x480,384x640,480x640,720x1280
230 Single-Image-Desnowing-HDCWNet ■■■ DeSnowing/512x672
231 DRBL ■■■ Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
232 MIMO-UNet ■■■ DeBlur/180x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
234 FBCNN ■■■ DeNoise/180x320,240x320,320x480,360x640,480x640,720x1280
240 BSRGAN ■■■ x2,x4/64x64,96x96,128x128,160x160,180x320,240x320,No-LICENSE
241 SCL-LLE ■■■ Low-light Image Enhancement/180x320,240x320,320x480,480x640,720x1280,No-LICENSE
243 Zero-DCE-improved ■■■ Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280,academic use only
249 Real-CUGAN ■■■ 2x,3x,4x/64x64,96x96,128x128,120x160,160x160,180x320,240x320
251 AU-GAN ■■■ Low-light Image Enhancement/128x256,240x320,240x640,256x512,480x640,512x1024,720x1280
253 TransWeather ■■■ DeRain,DeHaizing,DeSnow/192x320,256x320,320x480,384x640,480x640,736x1280
261 EfficientDerain ■■■ v4_SPA,v4_rain100H,v4_rain1400/192x320,256x320,320x480,384x640,480x640,608x800,736x1280
270 HWMNet ■■■ Low-light Image Enhancement/192x320,256x320,320x480,384x640,480x640,544x960,720x1280
275 FD-GAN ■■■ DeHaizing/192x320,256x320,384x640,480x640,720x1280,1080x1920,No-LICENSE
277 EDN-GTM ■■■ DeHaizing/192x320,240x320,384x480,480x640,512x512,720x1280,1088x1920
281 IMDN ■■■ x4/64x64,96x96,128x128,120x160,160x160,180x320,192x192,256x256,180x320,240x320,360x640,480x640
283 UIE-WD ■■■ Underwater Image Enhancement/WIP issue #97/192x320,240x320,320x480,360x640,480x640,720x1280,1080x1920
285 Decoupled-Low-light-Image-Enhancement ■■■ Low-light Image Enhancement/180x320,240x320,360x480,360x640,480x640,720x1280
286 SCI ■■■ Low-light Image Enhancement/180x320,240x320,360x480,360x640,480x640,720x1280
315 Illumination-Adaptive-Transformer ■■■ Low-light Image Enhancement
316 night_enhancement ■■■ Low-light Image Enhancement
320 Dehamer ■■■ Dehazing
323 Stripformer ■■■ DeBlur
325 DehazeFormer ■■■ Dehazing

12. Sound Classifier

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
013 ml-sound-classifier ■■■
097 YAMNet ■■■
098 SPICE ■■■
118 Speech-enhancement ■■■ WIP,EdgeTPU(LeakyLeRU)
120 FRILL ■■■ nofrontend
177 BirdNET-Lite ■■■ non-flex

13. Natural Language Processing

No. Model Name Link FP32 FP16 INT8 TPU WQ OV CM TFJS TF-TRT ONNX Remarks
048 Mobile_BERT ■■■
121 GPT2/DistillGPT2 ■■■
122 DistillBert ■■■

14. Text Recognition

No. Model Name Link FP32 FP16 INT8 TPU WQ OV CM TFJS TF-TRT ONNX Remarks
052 Handwritten_Text_Recognition ■■■
055 Handwritten_Japanese_Recognition ■■■
093 ocr_japanese ■■■ 120x160

15. Action Recognition

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
092 weld-porosity-detection-0001 ■■■
247 PoseC3D ■■■ Skeleton-based/FineGYM,NTU60_XSub,NTU120_XSub,UCF101,HMDB51/1x20x48x64x64
248 MS-G3D ■■■ Skeleton-based/Kinetics,NTU60,NTU120/1x3xTx25x2

16. Inpainting

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
100 HiFill ■■■
163 MST_inpainting ■■■
273 OPN(Onion-Peel Networks) ■■■
274 DeepFillv2 ■■■

17. GAN

No. Model Name Link FP32 FP16 INT8 TPU WQ OV CM TFJS TF-TRT ONNX Remarks
105 MobileStyleGAN ■■■
310 attentive-gan-derainnet ■■■ DeRain/180x320,240x320,240x360,320x480,360x640,480x640,720x1280

18. Transformer

No. Model Name Link FP32 FP16 INT8 TPU WQ OV CM TFJS TF-TRT ONNX Remarks
127 dino ■■■ experimental,dino_deits8/dino_deits16

19. Others

No. Model Name Link FP32 FP16 INT8 TPU DQ WQ OV CM TFJS TF-TRT ONNX Remarks
091 gaze-estimation-adas-0002 ■■■
102 Coconet ■■■ magenta
108 HAWP ■■■ Line Parsing,WIP
110 L-CNN ■■■ Line Parsing,WIP
117 DTLN ■■■
119 M-LSD ■■■
131 CFNet ■■■ 256x256,512x768
139 PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors ■■■
140 Ultra-Fast-Lane-Detection ■■■ 288x800
141 lanenet-lane-detection ■■■ 256x512
154 driver-action-recognition-adas-0002-encoder ■■■
155 driver-action-recognition-adas-0002-decoder ■■■
167 LSTR ■■■ 180x320,240x320,360x640,480x640,720x1280
229 DexiNed ■■■ 160x320,320x480,368x640,480x640,720x1280
233 HRNet-for-Fashion-Landmark-Estimation ■■■ 192x320,256x320,320x480,384x640,480x640,736x1280
237 piano_transcription ■■■ 1x160000,Nx160000
252 RAFT ■■■ small,chairs,kitti,sintel,things/iters=10,20/240x320,360x480,480x640
254 FullSubNet-plus ■■■ 1x1x257x100,200,500,1000,2000,3000,5000,7000,8000,10000
255 FILM ■■■ L1,Style,VGG/256x256,180x320,240x320,360x640,480x640,720x1280,1080x1920
260 KP2D ■■■ ResNet/128x320,192x320,192x448,192x640,256x320,256x448,256x640,320x448,384x640,480x640,512x1280,736x1280
272 CSFlow ■■■ chairs,kitti,things/iters=10,20/192x320,240x320,320x480,384x640,480x640,736x1280
276 HybridNets ■■■ anchor_HxW.npy/256x384,256x512,384x512,384x640,384x1024,512x640,768x1280,1152x1920
278 DWARF ■■■ StereoDepth+OpticalFlow,/192x320,256x320,384x640,512x640,512x640,768x1280
279 F-Clip ■■■ Line Parsing/ALL/192x320,256x320,320x480,384x640,480x640,736x1280
288 perceptual-reflection-removal ■■■ Reflection-Removal/180x320,240x320,360x480,360x640,480x640,720x1280
291 SeAFusion ■■■ 180x320,240x320,360x480,360x640,480x640,720x1280
297 GazeNet ■■■ 1x7x3x256x192/NxFx3x256x192
298 DEQ-Flow ■■■ AGPL-3.0 license
306 GMFlowNet ■■■ OpticalFlow/192x320,240x320,320x480,360x640,480x640,720x1280
309 ImageForensicsOSN ■■■ forgery detection/180x320,240x320,320x480,360x640,480x640,720x1280
318 pips ■■■
324 Ultra-Fast-Lane-Detection-v2 ■■■
326 YOLOPv2 ■■■
328 Stable_Diffusion ■■■

Sample.1 - Object detection by video file

$ cd 006_mobilenetv2-ssdlite/02_voc/03_integer_quantization
$ ./download.sh && cd ..
$ python3 mobilenetv2ssdlite_movie_sync.py

004

Sample.2 - Object detection by USB Camera

$ cd 006_mobilenetv2-ssdlite/02_voc/03_integer_quantization
$ ./download.sh && cd ..
$ python3 mobilenetv2ssdlite_usbcam_sync.py

005

Sample.3 - Head Pose Estimation, Multi-stage inference with multi-model

  • RaspberryPi4 (CPU only)
  • Ubuntu 19.10 64bit
  • Tensorflow / Tensorflow Lite with multi-thread acceleration tuning for PythonAPI
  • [Model.1] MobileNetV2-SSDLite dm=0.5 300x300, Integer Quantization
  • [Model.2] Head Pose Estimation 128x128, Integer Quantization
  • WIDERFACE
  • USB Camera, 640x480
  • IPS 1080p HDMI Display
  • Approximately 13FPS for all processes from pre-processing, inference, post-processing, and display
$ cd 025_head_pose_estimation/03_integer_quantization
$ ./download.sh
$ python3 head_pose_estimation.py

006

Sample.4 - Semantic Segmentation, DeeplabV3-plus 256x256

  • RaspberryPi4 (CPU only)
  • Ubuntu 19.10 64bit
  • Tensorflow / Tensorflow Lite with multi-thread acceleration tuning for PythonAPI
  • DeeplabV3-plus (MobileNetV2) Decoder 256x256, Integer Quantization
  • USB Camera, 640x480
  • IPS 1080p HDMI Display
  • Approximately 8.5 FPS for all processes from pre-processing, inference, post-processing, and display
$ cd 026_mobile-deeplabv3-plus/03_integer_quantization
$ ./download.sh
$ python3 deeplabv3plus_usbcam.py

007

Sample.5 - MediaPipe/FaceMesh, face_detection_front_128_weight_quant, face_landmark_192_weight_quant

Sample.6 - MediaPipe/Objectron, object_detection_3d_chair_640x480_weight_quant

Sample.7 - MediaPipe/Objectron, object_detection_3d_chair_640x480_openvino_FP32

Sample.8 - MediaPipe/BlazeFace, face_detection_front_128_integer_quant

Sample.9 - MediaPipe/Hand_Detection_and_Tracking(3D Hand Pose), hand_landmark_3d_256_integer_quant.tflite + palm_detection_builtin_256_integer_quant.tflite

Sample.10 - DBFace, 640x480_openvino_FP32

Sample.11 - Human_Pose_Estimation_3D, 640x480, Tensorflow.js + WebGL + Browser

Sample.12 - BlazePose Full Body, 640x480, Tensorflow.js + WebGL + Browser

Sample.13 - Facial Cartoonization, 640x480, OpenVINO Corei7 CPU only

  • Ubuntu 18.04 x86_64
  • OpenVINO
  • USB Camera, 640x480
  • Test Code 015

1. Environment

  • Ubuntu 18.04 x86_64
  • RaspberryPi4 Raspbian Buster 32bit / Raspbian Buster 64bit / Ubuntu 19.10 aarch64
  • Tensorflow-GPU v1.15.2 or Tensorflow v2.3.1+
  • OpenVINO 2020.2+
  • PyTorch 1.6.0+
  • ONNX Opset12
  • Python 3.6.8
  • PascalVOC Dataset
  • COCO Dataset
  • Cityscapes Dataset
  • Imagenette Dataset
  • CelebA Dataset
  • Audio file (.wav)
  • WIDERFACE
  • Google Colaboratory

2. Procedure

Procedure examples

2-1. MobileNetV3+DeeplabV3+PascalVOC

2-1-1. Preparation

$ cd ~
$ mkdir deeplab;cd deeplab
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research/deeplab/datasets
$ mkdir pascal_voc_seg

$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1rATNHizJdVHnaJtt-hW9MOgjxoaajzdh" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1rATNHizJdVHnaJtt-hW9MOgjxoaajzdh" \
  -o pascal_voc_seg/VOCtrainval_11-May-2012.tar

$ sed -i -e "s/python .\/remove_gt_colormap.py/python3 .\/remove_gt_colormap.py/g" \
      -i -e "s/python .\/build_voc2012_data.py/python3 .\/build_voc2012_data.py/g" \
      download_and_convert_voc2012.sh

$ sh download_and_convert_voc2012.sh

$ cd ../..
$ mkdir -p deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/train
$ mkdir -p deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/eval
$ mkdir -p deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/vis

$ export PATH_TO_TRAIN_DIR=${HOME}/deeplab/models/research/deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/train
$ export PATH_TO_DATASET=${HOME}/deeplab/models/research/deeplab/datasets/pascal_voc_seg/tfrecord
$ export PYTHONPATH=${HOME}/deeplab/models/research:${HOME}/deeplab/models/research/deeplab:${HOME}/deeplab/models/research/slim:${PYTHONPATH}
# See feature_extractor.network_map for supported model variants.
# models/research/deeplab/core/feature_extractor.py

networks_map = {
    'mobilenet_v2': _mobilenet_v2,
    'mobilenet_v3_large_seg': mobilenet_v3_large_seg,
    'mobilenet_v3_small_seg': mobilenet_v3_small_seg,
    'resnet_v1_18': resnet_v1_beta.resnet_v1_18,
    'resnet_v1_18_beta': resnet_v1_beta.resnet_v1_18_beta,
    'resnet_v1_50': resnet_v1_beta.resnet_v1_50,
    'resnet_v1_50_beta': resnet_v1_beta.resnet_v1_50_beta,
    'resnet_v1_101': resnet_v1_beta.resnet_v1_101,
    'resnet_v1_101_beta': resnet_v1_beta.resnet_v1_101_beta,
    'xception_41': xception.xception_41,
    'xception_65': xception.xception_65,
    'xception_71': xception.xception_71,
    'nas_pnasnet': nas_network.pnasnet,
    'nas_hnasnet': nas_network.hnasnet,
}

2-1-2. "mobilenet_v3_small_seg" Float32 regular training

$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=500000 \
    --train_split="train" \
    --model_variant="mobilenet_v3_small_seg" \
    --decoder_output_stride=16 \
    --train_crop_size="513,513" \
    --train_batch_size=8 \
    --dataset="pascal_voc_seg" \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

2-1-3. "mobilenet_v3_large_seg" Float32 regular training

$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=1000000 \
    --train_split="train" \
    --model_variant="mobilenet_v3_large_seg" \
    --decoder_output_stride=16 \
    --train_crop_size="513,513" \
    --train_batch_size=8 \
    --dataset="pascal_voc_seg" \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

2-1-4. Visualize training status

$ tensorboard \
  --logdir ${HOME}/deeplab/models/research/deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/train

2-2. MobileNetV3+DeeplabV3+Cityscaps - Post-training quantization

2-2-1. Preparation

$ cd ~
$ mkdir -p git/deeplab && cd git/deeplab
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research/deeplab/datasets
$ mkdir cityscapes && cd cityscapes

# Clone the script to generate Cityscapes Dataset.
$ git clone --depth 1 https://github.com/mcordts/cityscapesScripts.git
$ mv cityscapesScripts cityscapesScripts_ && \
  mv cityscapesScripts_/cityscapesscripts . && \
  rm -rf cityscapesScripts_

# Download Cityscapes Dataset.
# https://www.cityscapes-dataset.com/
# You will need to sign up and issue a userID and password to download the data set.
$ wget --keep-session-cookies --save-cookies=cookies.txt \
  --post-data 'username=(userid)&password=(password)&submit=Login' \
  https://www.cityscapes-dataset.com/login/
$ wget --load-cookies cookies.txt \
  --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=1
$ wget --load-cookies cookies.txt \
  --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
$ unzip gtFine_trainvaltest.zip && rm gtFine_trainvaltest.zip
$ rm README && rm license.txt
$ unzip leftImg8bit_trainvaltest.zip && rm leftImg8bit_trainvaltest.zip
$ rm README && rm license.txt

# Convert Cityscapes Dataset to TFRecords format.
$ cd ..
$ sed -i -e "s/python/python3/g" convert_cityscapes.sh
$ export PYTHONPATH=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes:${PYTHONPATH}
$ sh convert_cityscapes.sh

# Create a checkpoint storage folder for training. If training is not required,
# there is no need to carry out.
$ cd ../..
$ mkdir -p deeplab/datasets/cityscapes/exp/train_on_train_set/train && \
  mkdir -p deeplab/datasets/cityscapes/exp/train_on_train_set/eval && \
  mkdir -p deeplab/datasets/cityscapes/exp/train_on_train_set/vis

# Download the DeepLabV3 trained model of the MobileNetV3 backbone.
$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1f5ccaJmJBYwBmHvRQ77yGIUcXnqQIRY_" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1f5ccaJmJBYwBmHvRQ77yGIUcXnqQIRY_" \
  -o deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz
$ tar -zxvf deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz
$ rm deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz

$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1QxS3G55rUQvuiBF-hztQv5zCkfPfwlVU" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1QxS3G55rUQvuiBF-hztQv5zCkfPfwlVU" \
  -o deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz
$ tar -zxvf deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz
$ rm deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz

$ export PATH_TO_INITIAL_CHECKPOINT=${HOME}/git/deeplab/models/research/deeplab_mnv3_small_cityscapes_trainfine/model.ckpt
$ export PATH_TO_DATASET=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/tfrecord
$ export PYTHONPATH=${HOME}/git/deeplab/models/research:${HOME}/git/deeplab/models/research/deeplab:${HOME}/git/deeplab/models/research/slim:${PYTHONPATH}

# Fix a bug in the data generator.
$ sed -i -e \
  "s/splits_to_sizes={'train_fine': 2975,/splits_to_sizes={'train': 2975,/g" \
  deeplab/datasets/data_generator.py

# Back up the trained model.
$ cd ${HOME}/git/deeplab/models/research
$ cp deeplab/export_model.py deeplab/export_model.py_org
$ cp deeplab_mnv3_small_cityscapes_trainfine/frozen_inference_graph.pb \
  deeplab_mnv3_small_cityscapes_trainfine/frozen_inference_graph_org.pb
$ cp deeplab_mnv3_large_cityscapes_trainfine/frozen_inference_graph.pb \
  deeplab_mnv3_large_cityscapes_trainfine/frozen_inference_graph_org.pb

# Customize "export_model.py" according to the input resolution. Must be (multiple of 8 + 1).
#   (example.1) 769 = 8 * 96 + 1
#   (example.2) 512 = 8 * 64 + 1
#   (example.3) 320 = 8 * 40 + 1
# And it is necessary to change from tf.uint8 type to tf.float32 type.
$ sed -i -e \
  "s/tf.placeholder(tf.uint8, \[1, None, None, 3\], name=_INPUT_NAME)/tf.placeholder(tf.float32, \[1, 769, 769, 3\], name=_INPUT_NAME)/g" \
  deeplab/export_model.py

2-2-2. Parameter sheet

# crop_size and image_pooling_crop_size are multiples of --decoder_output_stride + 1
# 769 = 8 * 96 + 1
# 513 = 8 * 64 + 1
# 321 = 8 * 40 + 1

# --initialize_last_layer=True initializes the final layer with the weight of
# tf_initial_checkpoint (inherits the weight)

# Named tuple to describe the dataset properties.
# deeplab/datasets/data_generator.py
DatasetDescriptor = collections.namedtuple(
    'DatasetDescriptor',
    [
        'splits_to_sizes',  # Splits of the dataset into training, val and test.
        'num_classes',  # Number of semantic classes, including the
                        # background class (if exists). For example, there
                        # are 20 foreground classes + 1 background class in
                        # the PASCAL VOC 2012 dataset. Thus, we set
                        # num_classes=21.
        'ignore_label',  # Ignore label value.
    ])

_CITYSCAPES_INFORMATION = DatasetDescriptor(
    splits_to_sizes={'train': 2975,
                     'train_coarse': 22973,
                     'trainval_fine': 3475,
                     'trainval_coarse': 23473,
                     'val_fine': 500,
                     'test_fine': 1525},
    num_classes=19,
    ignore_label=255,
)

_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 1464,
        'train_aug': 10582,
        'trainval': 2913,
        'val': 1449,
    },
    num_classes=21,
    ignore_label=255,
)

_ADE20K_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 20210,  # num of samples in images/training
        'val': 2000,  # num of samples in images/validation
    },
    num_classes=151,
    ignore_label=0,
)

_DATASETS_INFORMATION = {
    'cityscapes': _CITYSCAPES_INFORMATION,
    'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
    'ade20k': _ADE20K_INFORMATION,
}

# A map from network name to network function. model_variant.
# deeplab/core/feature_extractor.py
networks_map = {
    'mobilenet_v2': _mobilenet_v2,
    'mobilenet_v3_large_seg': mobilenet_v3_large_seg,
    'mobilenet_v3_small_seg': mobilenet_v3_small_seg,
    'resnet_v1_18': resnet_v1_beta.resnet_v1_18,
    'resnet_v1_18_beta': resnet_v1_beta.resnet_v1_18_beta,
    'resnet_v1_50': resnet_v1_beta.resnet_v1_50,
    'resnet_v1_50_beta': resnet_v1_beta.resnet_v1_50_beta,
    'resnet_v1_101': resnet_v1_beta.resnet_v1_101,
    'resnet_v1_101_beta': resnet_v1_beta.resnet_v1_101_beta,
    'xception_41': xception.xception_41,
    'xception_65': xception.xception_65,
    'xception_71': xception.xception_71,
    'nas_pnasnet': nas_network.pnasnet,
    'nas_hnasnet': nas_network.hnasnet,
}

2-2-3. "mobilenet_v3_small_seg" Export Model

Generate Freeze Graph (.pb) with INPUT Placeholder changed from checkpoint file (.ckpt).

$ python3 deeplab/export_model.py \
    --checkpoint_path=./deeplab_mnv3_small_cityscapes_trainfine/model.ckpt \
    --export_path=./deeplab_mnv3_small_cityscapes_trainfine/frozen_inference_graph.pb \
    --num_classes=19 \
    --crop_size=769 \
    --crop_size=769 \
    --model_variant="mobilenet_v3_small_seg" \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8

2-2-4. "mobilenet_v3_large_seg" Export Model

Generate Freeze Graph (.pb) with INPUT Placeholder changed from checkpoint file (.ckpt).

$ python3 deeplab/export_model.py \
    --checkpoint_path=./deeplab_mnv3_large_cityscapes_trainfine/model.ckpt \
    --export_path=./deeplab_mnv3_large_cityscapes_trainfine/frozen_inference_graph.pb \
    --num_classes=19 \
    --crop_size=769 \
    --crop_size=769 \
    --model_variant="mobilenet_v3_large_seg" \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8

If you follow the Google Colaboratory sample procedure, copy the "deeplab_mnv3_small_cityscapes_trainfine" folder and "deeplab_mnv3_large_cityscapes_trainfine" to your Google Drive "My Drive". It is not necessary if all procedures described in Google Colaboratory are performed in a PC environment. 001 002

2-2-5. Google Colaboratory - Post-training quantization - post_training_integer_quant.ipynb

  • Weight Quantization
  • Integer Quantization
  • Full Integer Quantization

https://colab.research.google.com/drive/1TtCJ-uMNTArpZxrf5DCNbZdn08DsiW8F

2-3. MobileNetV3+DeeplabV3+Cityscaps - Quantization-aware training

2-3-1. "mobilenet_v3_small_seg" Quantization-aware training

$ cd ${HOME}/git/deeplab/models/research
$ export PATH_TO_TRAINED_FLOAT_MODEL=${HOME}/git/deeplab/models/research/deeplab_mnv3_small_cityscapes_trainfine/model.ckpt
$ export PATH_TO_TRAIN_DIR=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train
$ export PATH_TO_DATASET=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/tfrecord

# deeplab_mnv3_small_cityscapes_trainfine
$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=5000 \
    --train_split="train" \
    --model_variant="mobilenet_v3_small_seg" \
    --train_crop_size="769,769" \
    --train_batch_size=8 \
    --dataset="cityscapes" \
    --initialize_last_layer=False \
    --base_learning_rate=3e-5 \
    --quantize_delay_step=0 \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8 \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --tf_initial_checkpoint=${PATH_TO_TRAINED_FLOAT_MODEL} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

2-3-2. "mobilenet_v3_large_seg" Quantization-aware training

$ cd ${HOME}/git/deeplab/models/research
$ export PATH_TO_TRAINED_FLOAT_MODEL=${HOME}/git/deeplab/models/research/deeplab_mnv3_large_cityscapes_trainfine/model.ckpt
$ export PATH_TO_TRAIN_DIR=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train
$ export PATH_TO_DATASET=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/tfrecord

# deeplab_mnv3_large_cityscapes_trainfine
$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=4350 \
    --train_split="train" \
    --model_variant="mobilenet_v3_large_seg" \
    --train_crop_size="769,769" \
    --train_batch_size=8 \
    --dataset="cityscapes" \
    --initialize_last_layer=False \
    --base_learning_rate=3e-5 \
    --quantize_delay_step=0 \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8 \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --tf_initial_checkpoint=${PATH_TO_TRAINED_FLOAT_MODEL} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

The orange line is "deeplab_mnv3_small_cityscapes_trainfine" loss. The blue line is "deeplab_mnv3_large_cityscapes_trainfine" loss. 003

2-4. MobileNetV2+DeeplabV3+coco/voc - Post-training quantization

2-4-1. Preparation

$ cd ${HOME}/git/deeplab/models/research

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz
$ tar -zxvf deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz
$ rm deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz
$ tar -zxvf deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz
$ rm deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
$ tar -zxvf deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
$ rm deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz

$ sed -i -e \
  "s/tf.placeholder(tf.uint8, \[1, None, None, 3\], name=_INPUT_NAME)/tf.placeholder(tf.float32, \[1, 257, 257, 3\], name=_INPUT_NAME)/g" \
  deeplab/export_model.py

$ export PYTHONPATH=${HOME}/git/deeplab/models/research:${HOME}/git/deeplab/models/research/deeplab:${HOME}/git/deeplab/models/research/slim:${PYTHONPATH}

$ python3 deeplab/export_model.py \
  --checkpoint_path=./deeplabv3_mnv2_dm05_pascal_trainaug/model.ckpt \
  --export_path=./deeplabv3_mnv2_dm05_pascal_trainaug/frozen_inference_graph.pb \
  --model_variant="mobilenet_v2" \
  --crop_size=257 \
  --crop_size=257 \
  --depth_multiplier=0.5

$ python3 deeplab/export_model.py \
  --checkpoint_path=./deeplabv3_mnv2_dm05_pascal_trainval/model.ckpt \
  --export_path=./deeplabv3_mnv2_dm05_pascal_trainval/frozen_inference_graph.pb \
  --model_variant="mobilenet_v2" \
  --crop_size=257 \
  --crop_size=257 \
  --depth_multiplier=0.5

$ python3 deeplab/export_model.py \
  --checkpoint_path=./deeplabv3_mnv2_pascal_train_aug/model.ckpt-30000 \
  --export_path=./deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb \
  --model_variant="mobilenet_v2" \
  --crop_size=257 \
  --crop_size=257

2-5. MobileNetV3-SSD+coco - Post-training quantization

2-5-1. Preparation

$ cd ~
$ sudo pip3 install tensorflow-gpu==1.15.0
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research

$ git clone https://github.com/cocodataset/cocoapi.git
$ cd cocoapi/PythonAPI
$ make
$ cp -r pycocotools ../..
$ cd ../..
$ wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip
$ unzip protobuf.zip
$ ./bin/protoc object_detection/protos/*.proto --python_out=.

$ sudo apt-get install -y protobuf-compiler python3-pil python3-lxml python3-tk
$ sudo -H pip3 install Cython contextlib2 jupyter matplotlib

$ export PYTHONPATH=${PWD}:${PWD}/object_detection:${PWD}/slim:${PYTHONPATH}

$ mkdir -p ssd_mobilenet_v3_small_coco_2019_08_14 && cd ssd_mobilenet_v3_small_coco_2019_08_14
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1uqaC0Y-yRtzkpu1EuZ3BzOyh9-i_3Qgi" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1uqaC0Y-yRtzkpu1EuZ3BzOyh9-i_3Qgi" -o ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ tar -zxvf ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ rm ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ cd ..

$ mkdir -p ssd_mobilenet_v3_large_coco_2019_08_14 && cd ssd_mobilenet_v3_large_coco_2019_08_14
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1NGLjKRWDQZ_kibQHlLZ7Eetuuz1waC7X" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1NGLjKRWDQZ_kibQHlLZ7Eetuuz1waC7X" -o ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ tar -zxvf ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ rm ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ cd ..

2-5-2. Create a conversion script from checkpoint format to saved_model format

import tensorflow as tf
import os
import shutil
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.tools import freeze_graph
from tensorflow.python import ops
from tensorflow.tools.graph_transforms import TransformGraph

def freeze_model(saved_model_dir, output_node_names, output_filename):
  output_graph_filename = os.path.join(saved_model_dir, output_filename)
  initializer_nodes = ''
  freeze_graph.freeze_graph(
      input_saved_model_dir=saved_model_dir,
      output_graph=output_graph_filename,
      saved_model_tags = tag_constants.SERVING,
      output_node_names=output_node_names,
      initializer_nodes=initializer_nodes,
      input_graph=None,
      input_saver=False,
      input_binary=False,
      input_checkpoint=None,
      restore_op_name=None,
      filename_tensor_name=None,
      clear_devices=True,
      input_meta_graph=False,
  )

def get_graph_def_from_file(graph_filepath):
  tf.reset_default_graph()
  with ops.Graph().as_default():
    with tf.gfile.GFile(graph_filepath, 'rb') as f:
      graph_def = tf.GraphDef()
      graph_def.ParseFromString(f.read())
      return graph_def

def optimize_graph(model_dir, graph_filename, transforms, input_name, output_names, outname='optimized_model.pb'):
  input_names = [input_name] # change this as per how you have saved the model
  graph_def = get_graph_def_from_file(os.path.join(model_dir, graph_filename))
  optimized_graph_def = TransformGraph(
      graph_def,
      input_names,
      output_names,
      transforms)
  tf.train.write_graph(optimized_graph_def,
                      logdir=model_dir,
                      as_text=False,
                      name=outname)
  print('Graph optimized!')

def convert_graph_def_to_saved_model(export_dir, graph_filepath, input_name, outputs):
  graph_def = get_graph_def_from_file(graph_filepath)
  with tf.Session(graph=tf.Graph()) as session:
    tf.import_graph_def(graph_def, name='')
    tf.compat.v1.saved_model.simple_save(
        session,
        export_dir,# change input_image to node.name if you know the name
        inputs={input_name: session.graph.get_tensor_by_name('{}:0'.format(node.name))
            for node in graph_def.node if node.op=='Placeholder'},
        outputs={t.rstrip(":0"):session.graph.get_tensor_by_name(t) for t in outputs}
    )
    print('Optimized graph converted to SavedModel!')

tf.compat.v1.enable_eager_execution()

# Look up the name of the placeholder for the input node
graph_def=get_graph_def_from_file('./ssd_mobilenet_v3_small_coco_2019_08_14/frozen_inference_graph.pb')
input_name_small=""
for node in graph_def.node:
    if node.op=='Placeholder':
        print("##### ssd_mobilenet_v3_small_coco_2019_08_14 - Input Node Name #####", node.name) # this will be the input node
        input_name_small=node.name

# Look up the name of the placeholder for the input node
graph_def=get_graph_def_from_file('./ssd_mobilenet_v3_large_coco_2019_08_14/frozen_inference_graph.pb')
input_name_large=""
for node in graph_def.node:
    if node.op=='Placeholder':
        print("##### ssd_mobilenet_v3_large_coco_2019_08_14 - Input Node Name #####", node.name) # this will be the input node
        input_name_large=node.name

# ssd_mobilenet_v3 output names
output_node_names = ['raw_outputs/class_predictions','raw_outputs/box_encodings']
outputs = ['raw_outputs/class_predictions:0','raw_outputs/box_encodings:0']

# Optimizing the graph via TensorFlow library
transforms = []
optimize_graph('./ssd_mobilenet_v3_small_coco_2019_08_14', 'frozen_inference_graph.pb', transforms, input_name_small, output_node_names, outname='optimized_model_small.pb')
optimize_graph('./ssd_mobilenet_v3_large_coco_2019_08_14', 'frozen_inference_graph.pb', transforms, input_name_large, output_node_names, outname='optimized_model_large.pb')

# convert this to a s TF Serving compatible mode - ssd_mobilenet_v3_small_coco_2019_08_14
shutil.rmtree('./ssd_mobilenet_v3_small_coco_2019_08_14/0', ignore_errors=True)
convert_graph_def_to_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0',
                                 './ssd_mobilenet_v3_small_coco_2019_08_14/optimized_model_small.pb', input_name_small, outputs)

# convert this to a s TF Serving compatible mode - ssd_mobilenet_v3_large_coco_2019_08_14
shutil.rmtree('./ssd_mobilenet_v3_large_coco_2019_08_14/0', ignore_errors=True)
convert_graph_def_to_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0',
                                 './ssd_mobilenet_v3_large_coco_2019_08_14/optimized_model_large.pb', input_name_large, outputs)

2-5-3. Confirm the structure of saved_model 【ssd_mobilenet_v3_small_coco_2019_08_14】

$ saved_model_cli show --dir ./ssd_mobilenet_v3_small_coco_2019_08_14/0 --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['normalized_input_image_tensor'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 320, 320, 3)
        name: normalized_input_image_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['raw_outputs/box_encodings'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 4)
        name: raw_outputs/box_encodings:0
    outputs['raw_outputs/class_predictions'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 91)
        name: raw_outputs/class_predictions:0
  Method name is: tensorflow/serving/predict

2-5-4. Confirm the structure of saved_model 【ssd_mobilenet_v3_large_coco_2019_08_14】

$ saved_model_cli show --dir ./ssd_mobilenet_v3_large_coco_2019_08_14/0 --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['normalized_input_image_tensor'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 320, 320, 3)
        name: normalized_input_image_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['raw_outputs/box_encodings'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 4)
        name: raw_outputs/box_encodings:0
    outputs['raw_outputs/class_predictions'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 91)
        name: raw_outputs/class_predictions:0
  Method name is: tensorflow/serving/predict

2-5-5. Creating the destination path for the calibration test dataset 6GB

$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1Uk9F4Tc-9UgnvARIVkloSoePUynyST6E" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1Uk9F4Tc-9UgnvARIVkloSoePUynyST6E" -o TFDS.tar.gz
$ tar -zxvf TFDS.tar.gz
$ rm TFDS.tar.gz

2-5-6. Quantization

2-5-6-1. ssd_mobilenet_v3_small_coco_2019_08_14
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

def representative_dataset_gen():
  for data in raw_test_data.take(100):
    image = data['image'].numpy()
    image = tf.image.resize(image, (320, 320))
    image = image[np.newaxis,:,:,:]
    yield [image]

tf.compat.v1.enable_eager_execution()

# Generating a calibration data set
#raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS")
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS", download=False)
print(info)

# Weight Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_weight_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Weight Quantization complete! - mobilenet_v3_small_weight_quant.tflite")

# Integer Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Integer Quantization complete! - mobilenet_v3_small_integer_quant.tflite")

# Full Integer Quantization - Input/Output=int8
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_full_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Full Integer Quantization complete! - mobilenet_v3_small_full_integer_quant.tflite")
2-5-6-2. ssd_mobilenet_v3_large_coco_2019_08_14
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

def representative_dataset_gen():
  for data in raw_test_data.take(100):
    image = data['image'].numpy()
    image = tf.image.resize(image, (320, 320))
    image = image[np.newaxis,:,:,:]
    yield [image]

tf.compat.v1.enable_eager_execution()

# Generating a calibration data set
#raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS")
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS", download=False)

# Weight Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_weight_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Weight Quantization complete! - mobilenet_v3_large_weight_quant.tflite")

# Integer Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Integer Quantization complete! - mobilenet_v3_large_integer_quant.tflite")

# Full Integer Quantization - Input/Output=int8
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_full_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Full Integer Quantization complete! - mobilenet_v3_large_full_integer_quant.tflite")

2-6. MobileNetV2-SSDLite+VOC - Training -> Integer Quantization

2-6-1. Training

Learning with the MobileNetV2-SSDLite Pascal-VOC dataset [Remake of Docker version]

2-6-2. Export model (--add_postprocessing_op=True)

06_mobilenetv2-ssdlite/02_voc/01_float32/00_export_tflite_model.txt

2-6-3. Integer Quantization

06_mobilenetv2-ssdlite/02_voc/01_float32/03_integer_quantization_with_postprocess.py

3. TFLite Model Benchmark

$ sudo apt-get install python-future

## Bazel for Ubuntu18.04 x86_64 install
$ wget https://github.com/bazelbuild/bazel/releases/download/2.0.0/bazel-2.0.0-installer-linux-x86_64.sh
$ sudo chmod +x bazel-2.0.0-installer-linux-x86_64.sh
$ ./bazel-2.0.0-installer-linux-x86_64.sh
$ sudo apt-get install -y openjdk-8-jdk

## Bazel for RaspberryPi3/4 Raspbian/Debian Buster armhf install
$ wget https://github.com/PINTO0309/Bazel_bin/raw/master/3.1.0/Raspbian_Debian_Buster_armhf/openjdk-8-jdk/install.sh
$ ./install.sh
$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1LQUSal55R6fmawZS9zZuk6-5ZFOdUqRK" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1LQUSal55R6fmawZS9zZuk6-5ZFOdUqRK" \
  -o adoptopenjdk-8-hotspot_8u222-b10-2_armhf.deb
$ sudo apt-get install -y ./adoptopenjdk-8-hotspot_8u222-b10-2_armhf.deb

## Bazel for RaspberryPi3/4 Raspbian/Debian Buster aarch64 install
$ wget https://github.com/PINTO0309/Bazel_bin/raw/master/3.1.0/Raspbian_Debian_Buster_aarch64/openjdk-8-jdk/install.sh
$ ./install.sh
$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1VwLxzT3EOTbhSzwvRF2H4ChTQyTQBt3x" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1VwLxzT3EOTbhSzwvRF2H4ChTQyTQBt3x" \
  -o adoptopenjdk-8-hotspot_8u222-b10-2_arm64.deb
$ sudo apt-get install -y ./adoptopenjdk-8-hotspot_8u222-b10-2_arm64.deb

## Clone Tensorflow v2.1.0+
$ git clone --depth 1 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow

## Build and run TFLite Model Benchmark Tool
$ bazel run -c opt tensorflow/lite/tools/benchmark:benchmark_model -- \
  --graph=${HOME}/Downloads/deeplabv3_257_mv_gpu.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --enable_op_profiling=true

$ bazel run -c opt tensorflow/lite/tools/benchmark:benchmark_model -- \
  --graph=${HOME}/Downloads/deeplabv3_257_mv_gpu.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --use_xnnpack=true \
  --enable_op_profiling=true

$ bazel run \
  -c opt \
  --config=noaws \
  --config=nohdfs \
  --config=nonccl \
  tensorflow/lite/tools/benchmark:benchmark_model_plus_flex -- \
  --graph=${HOME}/git/tf-monodepth2/monodepth2_flexdelegate_weight_quant.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --enable_op_profiling=true

$ bazel run \
  -c opt \
  --config=noaws \
  --config=nohdfs \
  --config=nonccl \
  tensorflow/lite/tools/benchmark:benchmark_model_plus_flex -- \
  --graph=${HOME}/git/tf-monodepth2/monodepth2_flexdelegate_weight_quant.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --use_xnnpack=true \
  --enable_op_profiling=true
x86_64 deeplab_mnv3_small_weight_quant_769.tflite Benchmark
Number of nodes executed: 171
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       45	  1251.486	    67.589%	    67.589%	     0.000	        0
	       DEPTHWISE_CONV_2D	       11	   438.764	    23.696%	    91.286%	     0.000	        0
	              HARD_SWISH	       16	    54.855	     2.963%	    94.248%	     0.000	        0
	                 ARG_MAX	        1	    24.850	     1.342%	    95.591%	     0.000	        0
	         RESIZE_BILINEAR	        5	    23.805	     1.286%	    96.876%	     0.000	        0
	                     MUL	       30	    14.914	     0.805%	    97.682%	     0.000	        0
	                     ADD	       18	    10.646	     0.575%	    98.257%	     0.000	        0
	       SPACE_TO_BATCH_ND	        7	     9.567	     0.517%	    98.773%	     0.000	        0
	       BATCH_TO_SPACE_ND	        7	     7.431	     0.401%	    99.175%	     0.000	        0
	                     SUB	        2	     6.131	     0.331%	    99.506%	     0.000	        0
	         AVERAGE_POOL_2D	       10	     5.435	     0.294%	    99.799%	     0.000	        0
	                 RESHAPE	        6	     2.171	     0.117%	    99.916%	     0.000	        0
	                     PAD	        1	     0.660	     0.036%	    99.952%	     0.000	        0
	                    CAST	        2	     0.601	     0.032%	    99.985%	     0.000	        0
	           STRIDED_SLICE	        1	     0.277	     0.015%	   100.000%	     0.000	        0
	        Misc Runtime Ops	        1	     0.008	     0.000%	   100.000%	    33.552	        0
	              DEQUANTIZE	        8	     0.000	     0.000%	   100.000%	     0.000	        0

Timings (microseconds): count=52 first=224 curr=1869070 min=224 max=2089397 avg=1.85169e+06 std=373988
Memory (bytes): count=0
171 nodes observed
x86_64 deeplab_mnv3_large_weight_quant_769.tflite Benchmark
Number of nodes executed: 194
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       51	  4123.348	    82.616%	    82.616%	     0.000	        0
	       DEPTHWISE_CONV_2D	       15	   628.139	    12.586%	    95.202%	     0.000	        0
	              HARD_SWISH	       15	    90.448	     1.812%	    97.014%	     0.000	        0
	                     MUL	       32	    29.393	     0.589%	    97.603%	     0.000	        0
	                 ARG_MAX	        1	    22.866	     0.458%	    98.061%	     0.000	        0
	                     ADD	       25	    22.860	     0.458%	    98.519%	     0.000	        0
	         RESIZE_BILINEAR	        5	    22.494	     0.451%	    98.970%	     0.000	        0
	       SPACE_TO_BATCH_ND	        8	    18.518	     0.371%	    99.341%	     0.000	        0
	       BATCH_TO_SPACE_ND	        8	    15.522	     0.311%	    99.652%	     0.000	        0
	         AVERAGE_POOL_2D	        9	     7.855	     0.157%	    99.809%	     0.000	        0
	                     SUB	        2	     5.896	     0.118%	    99.928%	     0.000	        0
	                 RESHAPE	        6	     2.133	     0.043%	    99.970%	     0.000	        0
	                     PAD	        1	     0.631	     0.013%	    99.983%	     0.000	        0
	                    CAST	        2	     0.575	     0.012%	    99.994%	     0.000	        0
	           STRIDED_SLICE	        1	     0.260	     0.005%	   100.000%	     0.000	        0
	        Misc Runtime Ops	        1	     0.012	     0.000%	   100.000%	    38.304	        0
	              DEQUANTIZE	       12	     0.003	     0.000%	   100.000%	     0.000	        0

Timings (microseconds): count=31 first=193 curr=5276579 min=193 max=5454605 avg=4.99104e+06 std=1311782
Memory (bytes): count=0
194 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 deeplab_v3_plus_mnv3_decoder_256_integer_quant.tflite Benchmark
Number of nodes executed: 180
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       38	    37.595	    45.330%	    45.330%	     0.000	       38
	                     ADD	       37	    12.319	    14.854%	    60.184%	     0.000	       37
	       DEPTHWISE_CONV_2D	       17	    11.424	    13.774%	    73.958%	     0.000	       17
	         RESIZE_BILINEAR	        4	     7.336	     8.845%	    82.804%	     0.000	        4
	                     MUL	        9	     4.204	     5.069%	    87.873%	     0.000	        9
	                QUANTIZE	       13	     3.976	     4.794%	    92.667%	     0.000	       13
	         AVERAGE_POOL_2D	        9	     1.809	     2.181%	    94.848%	     0.000	        9
	                     DIV	        9	     1.167	     1.407%	    96.255%	     0.000	        9
	                 ARG_MAX	        1	     1.137	     1.371%	    97.626%	     0.000	        1
	           CONCATENATION	        2	     0.780	     0.940%	    98.566%	     0.000	        2
	         FULLY_CONNECTED	       16	     0.715	     0.862%	    99.428%	     0.000	       16
	              DEQUANTIZE	        9	     0.473	     0.570%	    99.999%	     0.000	        9
	                 RESHAPE	       16	     0.001	     0.001%	   100.000%	     0.000	       16

Timings (microseconds): count=50 first=83065 curr=82874 min=82675 max=85743 avg=83036 std=499
Memory (bytes): count=0
180 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 deeplab_v3_plus_mnv2_decoder_256_integer_quant.tflite Benchmark
Number of nodes executed: 81
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       41	    47.427	    65.530%	    65.530%	     0.000	       41
	       DEPTHWISE_CONV_2D	       19	    11.114	    15.356%	    80.887%	     0.000	       19
	         RESIZE_BILINEAR	        4	     7.342	    10.145%	    91.031%	     0.000	        4
	                QUANTIZE	        3	     2.953	     4.080%	    95.112%	     0.000	        3
	                     ADD	       10	     1.633	     2.256%	    97.368%	     0.000	       10
	                 ARG_MAX	        1	     1.137	     1.571%	    98.939%	     0.000	        1
	           CONCATENATION	        2	     0.736	     1.017%	    99.956%	     0.000	        2
	         AVERAGE_POOL_2D	        1	     0.032	     0.044%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=72544 curr=72425 min=72157 max=72745 avg=72412.9 std=137
Memory (bytes): count=0
81 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 mobilenet_v3_small_full_integer_quant.tflite Benchmark
Number of nodes executed: 176
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       61	    10.255	    36.582%	    36.582%	     0.000	       61
	       DEPTHWISE_CONV_2D	       27	     5.058	    18.043%	    54.625%	     0.000	       27
	                     MUL	       26	     5.056	    18.036%	    72.661%	     0.000	       26
	                     ADD	       14	     4.424	    15.781%	    88.442%	     0.000	       14
	                QUANTIZE	       13	     1.633	     5.825%	    94.267%	     0.000	       13
	              HARD_SWISH	       10	     0.918	     3.275%	    97.542%	     0.000	       10
	                LOGISTIC	        1	     0.376	     1.341%	    98.883%	     0.000	        1
	         AVERAGE_POOL_2D	        9	     0.199	     0.710%	    99.593%	     0.000	        9
	           CONCATENATION	        2	     0.084	     0.300%	    99.893%	     0.000	        2
	                 RESHAPE	       13	     0.030	     0.107%	   100.000%	     0.000	       13

Timings (microseconds): count=50 first=28827 curr=28176 min=27916 max=28827 avg=28121.2 std=165
Memory (bytes): count=0
176 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 mobilenet_v3_small_weight_quant.tflite Benchmark
Number of nodes executed: 186
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       61	    82.600	    79.265%	    79.265%	     0.000	       61
	       DEPTHWISE_CONV_2D	       27	     8.198	     7.867%	    87.132%	     0.000	       27
	                     MUL	       26	     4.866	     4.670%	    91.802%	     0.000	       26
	                     ADD	       14	     4.863	     4.667%	    96.469%	     0.000	       14
	                LOGISTIC	        1	     1.645	     1.579%	    98.047%	     0.000	        1
	         AVERAGE_POOL_2D	        9	     0.761	     0.730%	    98.777%	     0.000	        9
	              HARD_SWISH	       10	     0.683	     0.655%	    99.433%	     0.000	       10
	           CONCATENATION	        2	     0.415	     0.398%	    99.831%	     0.000	        2
	                 RESHAPE	       13	     0.171	     0.164%	    99.995%	     0.000	       13
	              DEQUANTIZE	       23	     0.005	     0.005%	   100.000%	     0.000	       23

Timings (microseconds): count=50 first=103867 curr=103937 min=103708 max=118926 avg=104299 std=2254
Memory (bytes): count=0
186 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 Posenet model-mobilenet_v1_101_257_integer_quant.tflite Benchmark
Number of nodes executed: 38
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       18	    31.906	    83.360%	    83.360%	     0.000	        0
	       DEPTHWISE_CONV_2D	       13	     5.959	    15.569%	    98.929%	     0.000	        0
	                QUANTIZE	        1	     0.223	     0.583%	    99.511%	     0.000	        0
	        Misc Runtime Ops	        1	     0.148	     0.387%	    99.898%	    96.368	        0
	              DEQUANTIZE	        4	     0.030	     0.078%	    99.976%	     0.000	        0
	                LOGISTIC	        1	     0.009	     0.024%	   100.000%	     0.000	        0

Timings (microseconds): count=70 first=519 curr=53370 min=519 max=53909 avg=38296 std=23892
Memory (bytes): count=0
38 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 MobileNetV2-SSDLite ssdlite_mobilenet_v2_coco_300_integer_quant.tflite Benchmark
Number of nodes executed: 128
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       55	    27.253	    71.185%	    71.185%	     0.000	        0
	       DEPTHWISE_CONV_2D	       33	     8.024	    20.959%	    92.143%	     0.000	        0
	                     ADD	       10	     1.565	     4.088%	    96.231%	     0.000	        0
	                QUANTIZE	       11	     0.546	     1.426%	    97.657%	     0.000	        0
	        Misc Runtime Ops	        1	     0.368	     0.961%	    98.618%	   250.288	        0
	                LOGISTIC	        1	     0.253	     0.661%	    99.279%	     0.000	        0
	              DEQUANTIZE	        2	     0.168	     0.439%	    99.718%	     0.000	        0
	           CONCATENATION	        2	     0.077	     0.201%	    99.919%	     0.000	        0
	                 RESHAPE	       13	     0.031	     0.081%	   100.000%	     0.000	        0

Timings (microseconds): count=70 first=1289 curr=53049 min=1289 max=53590 avg=38345.2 std=23436
Memory (bytes): count=0
128 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 ml-sound-classifier mobilenetv2_fsd2018_41cls_weight_quant.tflite Benchmark
Number of nodes executed: 111
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 MINIMUM	       35	    10.020	    45.282%	    45.282%	     0.000	       35
	                 CONV_2D	       34	     8.376	    37.852%	    83.134%	     0.000	       34
	       DEPTHWISE_CONV_2D	       18	     1.685	     7.615%	    90.749%	     0.000	       18
	                    MEAN	        1	     1.422	     6.426%	    97.176%	     0.000	        1
	         FULLY_CONNECTED	        2	     0.589	     2.662%	    99.837%	     0.000	        2
	                     ADD	       10	     0.031	     0.140%	    99.977%	     0.000	       10
	                 SOFTMAX	        1	     0.005	     0.023%	   100.000%	     0.000	        1
	              DEQUANTIZE	       10	     0.000	     0.000%	   100.000%	     0.000	       10

Timings (microseconds): count=50 first=22417 curr=22188 min=22041 max=22417 avg=22182 std=70
Memory (bytes): count=0
111 nodes observed
Ubuntu 19.10 aarch64 + RaspberryPi4 ml-sound-classifier mobilenetv2_fsd2018_41cls_integer_quant.tflite Benchmark
Number of nodes executed: 173
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                QUANTIZE	       70	     1.117	    23.281%	    23.281%	     0.000	        0
	                 MINIMUM	       35	     1.104	    23.010%	    46.290%	     0.000	        0
	                 CONV_2D	       34	     0.866	    18.049%	    64.339%	     0.000	        0
	                    MEAN	        1	     0.662	    13.797%	    78.137%	     0.000	        0
	       DEPTHWISE_CONV_2D	       18	     0.476	     9.921%	    88.058%	     0.000	        0
	         FULLY_CONNECTED	        2	     0.251	     5.231%	    93.289%	     0.000	        0
	        Misc Runtime Ops	        1	     0.250	     5.211%	    98.499%	    71.600	        0
	                     ADD	       10	     0.071	     1.480%	    99.979%	     0.000	        0
	                 SOFTMAX	        1	     0.001	     0.021%	   100.000%	     0.000	        0
	              DEQUANTIZE	        1	     0.000	     0.000%	   100.000%	     0.000	        0

Timings (microseconds): count=198 first=477 curr=9759 min=477 max=10847 avg=4876.6 std=4629
Memory (bytes): count=0
173 nodes observed
Raspbian Buster aarch64 + RaspberryPi4 deeplabv3_mnv2_pascal_trainval_257_integer_quant.tflite Benchmark
Number of nodes executed: 82
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       38	   103.576	    56.077%	    56.077%	     0.000	       38
	       DEPTHWISE_CONV_2D	       17	    33.151	    17.948%	    74.026%	     0.000	       17
	         RESIZE_BILINEAR	        3	    15.143	     8.199%	    82.224%	     0.000	        3
	                     SUB	        2	    10.908	     5.906%	    88.130%	     0.000	        2
	                     ADD	       11	     9.821	     5.317%	    93.447%	     0.000	       11
	                 ARG_MAX	        1	     8.824	     4.777%	    98.225%	     0.000	        1
	                     PAD	        1	     1.024	     0.554%	    98.779%	     0.000	        1
	                QUANTIZE	        2	     0.941	     0.509%	    99.289%	     0.000	        2
	                     MUL	        1	     0.542	     0.293%	    99.582%	     0.000	        1
	           CONCATENATION	        1	     0.365	     0.198%	    99.780%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.150	     0.081%	    99.861%	     0.000	        1
	                 RESHAPE	        2	     0.129	     0.070%	    99.931%	     0.000	        2
	             EXPAND_DIMS	        2	     0.128	     0.069%	   100.000%	     0.000	        2

Timings (microseconds): count=50 first=201226 curr=176476 min=176476 max=201226 avg=184741 std=4791
Memory (bytes): count=0
82 nodes observed
Ubuntu 18.04 x86_64 + XNNPACK enabled + 10 Threads deeplabv3_257_mv_gpu.tflite Benchmark
Number of nodes executed: 8
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                DELEGATE	        3	     6.716	    61.328%	    61.328%	     0.000	        3
	         RESIZE_BILINEAR	        3	     3.965	    36.207%	    97.534%	     0.000	        3
	           CONCATENATION	        1	     0.184	     1.680%	    99.215%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.086	     0.785%	   100.000%	     0.000	        1

Timings (microseconds): count=91 first=11051 curr=10745 min=10521 max=12552 avg=10955.4 std=352
Memory (bytes): count=0
8 nodes observed

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=3.58203 overall=56.0703
Ubuntu 18.04 x86_64 + XNNPACK disabled + 10 Threads deeplabv3_257_mv_gpu.tflite Benchmark
Number of nodes executed: 70
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	       DEPTHWISE_CONV_2D	       17	    41.704	    68.372%	    68.372%	     0.000	       17
	                 CONV_2D	       38	    15.932	    26.120%	    94.491%	     0.000	       38
	         RESIZE_BILINEAR	        3	     3.060	     5.017%	    99.508%	     0.000	        3
	                     ADD	       10	     0.149	     0.244%	    99.752%	     0.000	       10
	           CONCATENATION	        1	     0.109	     0.179%	    99.931%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.042	     0.069%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=59929 curr=60534 min=59374 max=63695 avg=61031.6 std=1182
Memory (bytes): count=0
70 nodes observed

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=0 overall=13.7109
Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads Faster-Grad-CAM weights_weight_quant.tflite Benchmark
umber of nodes executed: 74
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       31	     4.947	    77.588%	    77.588%	     0.000	       31
	                DELEGATE	       17	     0.689	    10.806%	    88.394%	     0.000	       17
	       DEPTHWISE_CONV_2D	       10	     0.591	     9.269%	    97.663%	     0.000	       10
	                    MEAN	        1	     0.110	     1.725%	    99.388%	     0.000	        1
	                     PAD	        5	     0.039	     0.612%	   100.000%	     0.000	        5
	              DEQUANTIZE	       10	     0.000	     0.000%	   100.000%	     0.000	       10

Timings (microseconds): count=155 first=6415 curr=6443 min=6105 max=6863 avg=6409.22 std=69
Memory (bytes): count=0
74 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads Faster-Grad-CAM weights_integer_quant.tflite Benchmark
Number of nodes executed: 72
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       35	     0.753	    34.958%	    34.958%	     0.000	        0
	                     PAD	        5	     0.395	    18.338%	    53.296%	     0.000	        0
	                    MEAN	        1	     0.392	    18.199%	    71.495%	     0.000	        0
	        Misc Runtime Ops	        1	     0.282	    13.092%	    84.587%	    89.232	        0
	       DEPTHWISE_CONV_2D	       17	     0.251	    11.653%	    96.240%	     0.000	        0
	                     ADD	       10	     0.054	     2.507%	    98.747%	     0.000	        0
	                QUANTIZE	        1	     0.024	     1.114%	    99.861%	     0.000	        0
	              DEQUANTIZE	        2	     0.003	     0.139%	   100.000%	     0.000	        0

Timings (microseconds): count=472 first=564 curr=3809 min=564 max=3950 avg=2188.51 std=1625
Memory (bytes): count=0
72 nodes observed
Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads EfficientNet-lite efficientnet-lite0-fp32.tflite Benchmark
Number of nodes executed: 5
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                DELEGATE	        2	     5.639	    95.706%	    95.706%	     0.000	        2
	         FULLY_CONNECTED	        1	     0.239	     4.056%	    99.762%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.014	     0.238%	   100.000%	     0.000	        1
	                 RESHAPE	        1	     0.000	     0.000%	   100.000%	     0.000	        1

Timings (microseconds): count=168 first=5842 curr=5910 min=5749 max=6317 avg=5894.55 std=100
Memory (bytes): count=0
5 nodes observed
Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads EfficientNet-lite efficientnet-lite4-fp32.tflite Benchmark
Number of nodes executed: 5
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                DELEGATE	        2	    33.720	    99.235%	    99.235%	     0.000	        2
	         FULLY_CONNECTED	        1	     0.231	     0.680%	    99.915%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.029	     0.085%	   100.000%	     0.000	        1
	                 RESHAPE	        1	     0.000	     0.000%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=32459 curr=34867 min=31328 max=35730 avg=33983.5 std=1426
Memory (bytes): count=0
5 nodes observed
Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads White-box-Cartoonization white_box_cartoonization_weight_quant.tflite Benchmark
Number of nodes executed: 47
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       18	 10731.842	    97.293%	    97.293%	     0.000	       18
	              LEAKY_RELU	       13	   236.792	     2.147%	    99.440%	     0.000	       13
	   TfLiteXNNPackDelegate	       10	    45.534	     0.413%	    99.853%	     0.000	       10
	         RESIZE_BILINEAR	        2	    11.237	     0.102%	    99.954%	     0.000	        2
	                     SUB	        3	     4.053	     0.037%	    99.991%	     0.000	        3
	                     DIV	        1	     0.977	     0.009%	   100.000%	     0.000	        1

Timings (microseconds): count=14 first=10866837 curr=11292015 min=10697744 max=12289882 avg=1.10305e+07 std=406791
Memory (bytes): count=0
47 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads edgetpu_deeplab_257_os16_integer_quant.tflite Benchmark
Number of nodes executed: 91
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       49	    54.679	    58.810%	    58.810%	     0.000	       49
	                     SUB	        2	    11.043	    11.877%	    70.687%	     0.000	        2
	                     ADD	       16	     8.909	     9.582%	    80.269%	     0.000	       16
	                 ARG_MAX	        1	     7.184	     7.727%	    87.996%	     0.000	        1
	         RESIZE_BILINEAR	        3	     6.654	     7.157%	    95.153%	     0.000	        3
	       DEPTHWISE_CONV_2D	       13	     3.409	     3.667%	    98.819%	     0.000	       13
	                     MUL	        1	     0.548	     0.589%	    99.408%	     0.000	        1
	                QUANTIZE	        2	     0.328	     0.353%	    99.761%	     0.000	        2
	                 RESHAPE	        2	     0.162	     0.174%	    99.935%	     0.000	        2
	         AVERAGE_POOL_2D	        1	     0.043	     0.046%	    99.982%	     0.000	        1
	           CONCATENATION	        1	     0.017	     0.018%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=92752 curr=93058 min=92533 max=94478 avg=93021.2 std=274
Memory (bytes): count=0
91 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads edgetpu_deeplab_257_os32_integer_quant.tflite Benchmark
Number of nodes executed: 91
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       49	    39.890	    52.335%	    52.335%	     0.000	       49
	                     SUB	        2	    11.043	    14.488%	    66.823%	     0.000	        2
	                     ADD	       16	     8.064	    10.580%	    77.403%	     0.000	       16
	                 ARG_MAX	        1	     7.011	     9.198%	    86.601%	     0.000	        1
	         RESIZE_BILINEAR	        3	     6.623	     8.689%	    95.290%	     0.000	        3
	       DEPTHWISE_CONV_2D	       13	     2.503	     3.284%	    98.574%	     0.000	       13
	                     MUL	        1	     0.544	     0.714%	    99.288%	     0.000	        1
	                QUANTIZE	        2	     0.313	     0.411%	    99.698%	     0.000	        2
	                 RESHAPE	        2	     0.178	     0.234%	    99.932%	     0.000	        2
	         AVERAGE_POOL_2D	        1	     0.041	     0.054%	    99.986%	     0.000	        1
	           CONCATENATION	        1	     0.011	     0.014%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=75517 curr=75558 min=75517 max=97776 avg=76262.5 std=3087
Memory (bytes): count=0
91 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads human_pose_estimation_3d_0001_256x448_integer_quant.tflite Benchmark
Number of nodes executed: 165
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       69	   343.433	    78.638%	    78.638%	     0.000	       69
	                     PAD	       38	    51.637	    11.824%	    90.462%	     0.000	       38
	       DEPTHWISE_CONV_2D	       14	    15.306	     3.505%	    93.967%	     0.000	       14
	                     ADD	       15	    14.535	     3.328%	    97.295%	     0.000	       15
	                     ELU	        6	     5.071	     1.161%	    98.456%	     0.000	        6
	                QUANTIZE	       11	     4.481	     1.026%	    99.482%	     0.000	       11
	              DEQUANTIZE	        9	     1.851	     0.424%	    99.906%	     0.000	        9
	           CONCATENATION	        3	     0.410	     0.094%	   100.000%	     0.000	        3

Timings (microseconds): count=50 first=425038 curr=423469 min=421348 max=969226 avg=436808 std=77255
Memory (bytes): count=0
165 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + BlazeFace face_detection_front_128_integer_quant.tflite Benchmark
Number of nodes executed: 79
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                     ADD	       16	     2.155	    34.120%	    34.120%	     0.000	       16
	                 CONV_2D	       21	     2.017	    31.935%	    66.054%	     0.000	       21
	                     PAD	       11	     1.014	    16.054%	    82.109%	     0.000	       11
	       DEPTHWISE_CONV_2D	       16	     0.765	    12.112%	    94.221%	     0.000	       16
	                QUANTIZE	        4	     0.186	     2.945%	    97.166%	     0.000	        4
	             MAX_POOL_2D	        3	     0.153	     2.422%	    99.588%	     0.000	        3
	              DEQUANTIZE	        2	     0.017	     0.269%	    99.857%	     0.000	        2
	           CONCATENATION	        2	     0.006	     0.095%	    99.952%	     0.000	        2
	                 RESHAPE	        4	     0.003	     0.047%	   100.000%	     0.000	        4

Timings (microseconds): count=144 first=6415 curr=6319 min=6245 max=6826 avg=6359.12 std=69
Memory (bytes): count=0
79 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + ssd_mobilenet_v2_mnasfpn_shared_box_predictor_320_coco_integer_quant.tflite Benchmark
Number of nodes executed: 588
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	      119	   109.253	    52.671%	    52.671%	     0.000	      119
	       DEPTHWISE_CONV_2D	       61	    33.838	    16.313%	    68.984%	     0.000	       61
	TFLite_Detection_PostProcess	        1	    22.711	    10.949%	    79.933%	     0.000	        1
	                LOGISTIC	        1	    17.696	     8.531%	    88.465%	     0.000	        1
	                     ADD	       59	    12.300	     5.930%	    94.395%	     0.000	       59
	                 RESHAPE	        8	     4.175	     2.013%	    96.407%	     0.000	        8
	           CONCATENATION	        2	     3.416	     1.647%	    98.054%	     0.000	        2
	 RESIZE_NEAREST_NEIGHBOR	       12	     1.873	     0.903%	    98.957%	     0.000	       12
	             MAX_POOL_2D	       13	     1.363	     0.657%	    99.614%	     0.000	       13
	                     MUL	       16	     0.737	     0.355%	    99.970%	     0.000	       16
	              DEQUANTIZE	      296	     0.063	     0.030%	   100.000%	     0.000	      296

Timings (microseconds): count=50 first=346007 curr=196005 min=192539 max=715157 avg=207709 std=75605
Memory (bytes): count=0
588 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + object_detection_3d_chair_640x480_integer_quant.tflite Benchmark
Number of nodes executed: 126
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       60	   146.537	    63.805%	    63.805%	     0.000	       60
	       DEPTHWISE_CONV_2D	       26	    45.022	    19.604%	    83.409%	     0.000	       26
	                     ADD	       23	    23.393	    10.186%	    93.595%	     0.000	       23
	          TRANSPOSE_CONV	        3	     9.930	     4.324%	    97.918%	     0.000	        3
	                QUANTIZE	        5	     3.103	     1.351%	    99.269%	     0.000	        5
	           CONCATENATION	        4	     1.541	     0.671%	    99.940%	     0.000	        4
	              DEQUANTIZE	        3	     0.117	     0.051%	    99.991%	     0.000	        3
	                     EXP	        1	     0.018	     0.008%	    99.999%	     0.000	        1
	                     NEG	        1	     0.002	     0.001%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=218224 curr=217773 min=217174 max=649357 avg=229732 std=62952
Memory (bytes): count=0
126 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + ssdlite_mobiledet_cpu_320x320_coco_integer_quant.tflite Benchmark
Number of nodes executed: 288
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       96	    22.996	    33.342%	    33.342%	     0.000	       96
	              HARD_SWISH	       57	    11.452	    16.604%	    49.946%	     0.000	       57
	                     MUL	       19	     9.423	    13.662%	    63.608%	     0.000	       19
	         AVERAGE_POOL_2D	       19	     8.439	    12.236%	    75.843%	     0.000	       19
	       DEPTHWISE_CONV_2D	       35	     7.810	    11.324%	    87.167%	     0.000	       35
	TFLite_Detection_PostProcess	        1	     5.650	     8.192%	    95.359%	     0.000	        1
	                     ADD	       12	     1.690	     2.450%	    97.809%	     0.000	       12
	                QUANTIZE	       12	     0.879	     1.274%	    99.084%	     0.000	       12
	                LOGISTIC	       20	     0.277	     0.402%	    99.485%	     0.000	       20
	              DEQUANTIZE	        2	     0.234	     0.339%	    99.825%	     0.000	        2
	           CONCATENATION	        2	     0.079	     0.115%	    99.939%	     0.000	        2
	                 RESHAPE	       13	     0.042	     0.061%	   100.000%	     0.000	       13

Timings (microseconds): count=50 first=69091 curr=68590 min=68478 max=83971 avg=69105.3 std=2147
Memory (bytes): count=0
288 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_256_256_dm100_integer_quant.tflite Benchmark
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	    51.819	    70.575%	    70.575%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    18.207	    24.797%	    95.372%	     0.000	       73
	                     ADD	        8	     1.243	     1.693%	    97.065%	     0.000	        8
	                QUANTIZE	       13	     1.132	     1.542%	    98.607%	     0.000	       13
	           CONCATENATION	        7	     0.607	     0.827%	    99.433%	     0.000	        7
	         RESIZE_BILINEAR	        1	     0.354	     0.482%	    99.916%	     0.000	        1
	              DEQUANTIZE	        1	     0.062	     0.084%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=73752 curr=73430 min=73191 max=75764 avg=73524.8 std=485
Memory (bytes): count=0
189 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_368_432_dm100_integer_quant.tflite Benchmark
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	   141.296	    69.289%	    69.289%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    53.244	    26.110%	    95.399%	     0.000	       73
	                QUANTIZE	       13	     3.059	     1.500%	    96.899%	     0.000	       13
	                     ADD	        8	     3.014	     1.478%	    98.377%	     0.000	        8
	           CONCATENATION	        7	     2.302	     1.129%	    99.506%	     0.000	        7
	         RESIZE_BILINEAR	        1	     0.852	     0.418%	    99.924%	     0.000	        1
	              DEQUANTIZE	        1	     0.155	     0.076%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=189613 curr=579873 min=189125 max=579873 avg=204021 std=70304
Memory (bytes): count=0
189 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_256_256_dm050_integer_quant.tflite Benchmark
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	    40.952	    71.786%	    71.786%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    13.508	    23.679%	    95.465%	     0.000	       73
	                QUANTIZE	       13	     1.123	     1.969%	    97.434%	     0.000	       13
	                     ADD	        8	     0.710	     1.245%	    98.678%	     0.000	        8
	           CONCATENATION	        7	     0.498	     0.873%	    99.551%	     0.000	        7
	         RESIZE_BILINEAR	        1	     0.193	     0.338%	    99.890%	     0.000	        1
	              DEQUANTIZE	        1	     0.063	     0.110%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=57027 curr=57048 min=56773 max=58042 avg=57135 std=229
Memory (bytes): count=0
189 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_368_432_dm050_integer_quant.tflite Benchmark
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	   104.618	    71.523%	    71.523%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    34.527	    23.605%	    95.128%	     0.000	       73
	                QUANTIZE	       13	     2.572	     1.758%	    96.886%	     0.000	       13
	           CONCATENATION	        7	     2.257	     1.543%	    98.429%	     0.000	        7
	                     ADD	        8	     1.683	     1.151%	    99.580%	     0.000	        8
	         RESIZE_BILINEAR	        1	     0.460	     0.314%	    99.894%	     0.000	        1
	              DEQUANTIZE	        1	     0.155	     0.106%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=172545 curr=146065 min=145260 max=172545 avg=146362 std=3756
Memory (bytes): count=0
189 nodes observed
RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + yolov4_tiny_voc_416x416_integer_quant.tflite Benchmark
Number of nodes executed: 71
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       21	   149.092	    61.232%	    61.232%	     0.000	       21
	              LEAKY_RELU	       19	    77.644	    31.888%	    93.121%	     0.000	       19
	                     PAD	        2	     8.036	     3.300%	    96.421%	     0.000	        2
	                QUANTIZE	       10	     4.580	     1.881%	    98.302%	     0.000	       10
	           CONCATENATION	        7	     2.415	     0.992%	    99.294%	     0.000	        7
	             MAX_POOL_2D	        3	     0.982	     0.403%	    99.697%	     0.000	        3
	                   SPLIT	        3	     0.615	     0.253%	    99.950%	     0.000	        3
	              DEQUANTIZE	        2	     0.082	     0.034%	    99.984%	     0.000	        2
	 RESIZE_NEAREST_NEIGHBOR	        1	     0.032	     0.013%	    99.997%	     0.000	        1
	           STRIDED_SLICE	        1	     0.004	     0.002%	    99.998%	     0.000	        1
	                     MUL	        1	     0.004	     0.002%	   100.000%	     0.000	        1
	                   SHAPE	        1	     0.000	     0.000%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=233307 curr=233318 min=232446 max=364068 avg=243522 std=33354
Memory (bytes): count=0
71 nodes observed

4. Reference articles

  1. [deeplab] what's the parameters of the mobilenetv3 pretrained model?
  2. When you want to fine-tune DeepLab on other datasets, there are a few cases
  3. [deeplab] Training deeplab model with ADE20K dataset
  4. Running DeepLab on PASCAL VOC 2012 Semantic Segmentation Dataset
  5. Quantize DeepLab model for faster on-device inference
  6. https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
  7. https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/quantize.md
  8. the quantized form of Shape operation is not yet implemented
  9. Post-training quantization
  10. Converter command line reference
  11. Quantization-aware training
  12. Converting a .pb file to .meta in TF 1.3
  13. Minimal code to load a trained TensorFlow model from a checkpoint and export it with SavedModelBuilder
  14. How to restore Tensorflow model from .pb file in python?
  15. Error with tag-sets when serving model using tensorflow_model_server tool
  16. ValueError: No 'serving_default' in the SavedModel's SignatureDefs. Possible values are 'name_of_my_model'
  17. kerasのモデルをデプロイする手順 - Signature作成方法解説
  18. TensorFlow で学習したモデルのグラフを tf.train.import_meta_graph でロードする
  19. Tensorflowのグラフ操作 Part1
  20. Configure input_map when importing a tensorflow model from metagraph file
  21. TFLite Model Benchmark Tool
  22. How to install Ubuntu 19.10 aarch64 (64bit) on RaspberryPi4
  23. https://github.com/rwightman/posenet-python.git
  24. https://github.com/sayakpaul/Adventures-in-TensorFlow-Lite.git

About

A repository for storing models that have been inter-converted between various frameworks. Supported frameworks are TensorFlow, PyTorch, ONNX, OpenVINO, TFJS, TFTRT, TensorFlowLite (Float32/16/INT8), EdgeTPU, CoreML.

https://qiita.com/PINTO

License:MIT License


Languages

Language:Python 86.7%Language:Shell 12.9%Language:C++ 0.3%Language:Dockerfile 0.0%