MrLacquer / hj-object-detect

Object detecting and estimation pose using darknet_ros with jsk_pcl

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

hj_object_detect (Kinetic)

Overview

This is a ROS package developed for object detection in camera images. Using darknet_ros(YOLO), for real-time object detection system. And using jsk_pcl for estimation coordinates of detected objects, just one class. NOT SUPPORT MULTI CLASSES. In the following ROS package detecting "plier", "hammer", "screw_driver". for this, I've ref. the open-manipulator-object-tracking-apple.

The packages have been tested under ROS Kinetic and Ubuntu 16.04, OpenCV 3.4.2, NVIDIA-SMI 418.87.00 Driver Version: 418.87.00 CUDA Version: 10.1

Author: Hyeonjun Park, koreaphj91@gmail.com

Affiliation: Human-Robot Interaction LAB, Kyung Hee Unviersity, South Korea

hj_object dectect: Detection image

Installation

  • Before do this, please backup important files.

Dependencies

This software is built on the Robotic Operating System (ROS).

One line install: https://cafe.naver.com/openrt/14575

for Desktop

wget https://raw.githubusercontent.com/ROBOTIS-GIT/robotis_tools/master/install_ros_kinetic.sh && chmod 755 ./install_ros_kinetic.sh && bash ./install_ros_kinetic.sh

Additionally, YOLO for ROS depends on following software:

$ sudo apt-get update && sudo apt-get upgrade

-- installation the env.
$ sudo apt-get -y purge  libopencv* python-opencv
$ sudo apt-get -y install build-essential cmake vim
$ sudo apt-get -y install pkg-config libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev libavcodec-dev
$ sudo apt-get -y install libavformat-dev libswscale-dev libxvidcore-dev libx264-dev libxine2-dev libv4l-dev
$ sudo apt-get -y install v4l-utils libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libqt4-dev
$ sudo apt-get -y install libgtk2.0-dev libgtk-3-dev mesa-utils libgl1-mesa-dri libqt4-opengl-dev
$ sudo apt-get -y install libatlas-base-dev gfortran libeigen3-dev python3-dev python3-numpy python-dev python-numpy libatlas-base-dev gfortran

-- opencv 3.4.2 & opencv_contrib-3.4.2 download
$ wget -O opencv.zip https://github.com/opencv/opencv/archive/3.4.2.zip
$ unzip opencv.zip
$ wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/3.4.2.zip
$ unzip opencv_contrib.zip

-- opencv build
$ cd ~/opencv-3.4.2/
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D WITH_TBB=OFF \
-D WITH_IPP=OFF \
-D WITH_1394=OFF \
-D BUILD_WITH_DEBUG_INFO=OFF \
-D BUILD_DOCS=OFF \
-D INSTALL_C_EXAMPLES=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D BUILD_EXAMPLES=OFF \
-D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF \
-D WITH_QT=OFF \
-D WITH_GTK=ON \
-D WITH_OPENGL=ON \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-3.4.2/modules \
-D WITH_V4L=ON  \
-D WITH_FFMPEG=ON \
-D WITH_XINE=ON \
-D BUILD_NEW_PYTHON_SUPPORT=ON \
../

-- opencv make compile
$ time make

-- opencv install
$ sudo make install
  • CUDA 10.0 with cuDNN 10.x, (How to install the cuda? in Korean),
    • notice: Do it after install the nvidia driver. And the cuda version is follow on your GPU. check up the GPUs supported
  • Download the CUDA in the NVIDIA webpage (link)
$ sudo dpkg -i cuda-repo-ubuntu1604-10-0-local-10.0.130-410.48_1.0-1_amd64.deb
$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get install cuda

$ gedit ~/.bashrc
   export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}$ 
   export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Or, if you installed the cuda 10.1,
$ gedit ~/.bashrc
   export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}$ 
   export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

$ reboot

- check up the installed
$ cat /proc/driver/nvidia/version
   NVRM version: NVIDIA UNIX x86_64 Kernel Module  418.87.00  Thu Aug  8 15:35:46 CDT 2019
   GCC version:  gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.11)
$ nvcc -V
   nvcc: NVIDIA (R) Cuda compiler driver
   Copyright (c) 2005-2018 NVIDIA Corporation
   Built on Sat_Aug_25_21:08:01_CDT_2018
   Cuda compilation tools, release 10.0, V10.0.130

- After download the cuDNN
$ sudo dpkg -i libcudnn7_7.6.2.24-1+cuda10.0_amd64.deb
$ sudo dpkg -i libcudnn7-dev_7.6.2.24-1+cuda10.0_amd64.deb
$ sudo dpkg -i libcudnn7-doc_7.6.2.24-1+cuda10.0_amd64.deb
 $ cd ~/catkin_ws/src 
 $ git clone --recursive https://github.com/leggedrobotics/darknet_ros.git
 $ cd ..
 $ catkin_make darknet_ros
 $ cd ~/catkin_ws/devel
 $ source setup.bash 
Intel SDK 2.0 install

- Register the server's public key
$ sudo apt-key adv --keyserver keys.gnupg.net --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE

- Add the server to the list of repositories:
$ sudo add-apt-repository "deb http://realsense-hw-public.s3.amazonaws.com/Debian/apt-repo xenial main" -u
$ sudo apt-get install librealsense2-dkms
$ sudo apt-get install librealsense2-utils
$ sudo apt-get install librealsense2-dev
$ sudo apt-get install librealsense2-dbg

RealSense ROS

$ cd ~/catkin_ws/src/realsense
$ git clone https://github.com/pal-robotics/ddynamic_reconfigure.git
sudo apt-get install ros-kinetic-jsk-recognition
sudo apt-get install ros-kinetic-jsk-topic-tools
   
source biuld pacakges 
$ cd ~/catkin_ws/src
$ git clone https://github.com/jsk-ros-pkg/jsk_common.git
$ cd jsk_common
$ rosdep install -y -r --from-path . --ignore-src
$ cd ..
$ catkin_make darknet_ros
  • nodelet, rtabmap-ros, navigation
$ sudo apt-get install ros-kinetic-octomap-server
$ sudo apt-get install ros-kinetic-nodelet
$ sudo apt-get install ros-kinetic-depth-image-proc
$ sudo apt-get install ros-kinetic-rtabmap-ros
$ sudo apt-get install ros-kinetic-navigation

ref. page, Oroca naver cafe, Korean

How to start?

Copy and paste

$ roscd hj_object_detect/
$ cd copy_paste_files
$ cp -r hj_p.yaml ~/catkin_ws/src/darknet_ros/darknet_ros/config

$ cp -r p.cfg ~/catkin_ws/src/darknet_ros/darknet_ros/yolo_network_config/cfg

$ cp -r YoloObjectDetector.cpp ~/catkin_ws/src/darknet_ros/darknet_ros/src
$ cp -r YoloObjectDetector.hpp ~/catkin_ws/src/darknet_ros/darknet_ros/include/darknet_ros

Weight file Dowload link

$ cd (your dowload folder)
$ cp -r p_final.weights ~/catkin_ws/src/darknet_ros/darknet_ros/yolo_network_config/weights

Real realsense camera

$ roslaunch hj_object_detect hj_object_detect_rviz.launch 
$ roslaunch hj_object_detect hj_jsk_test.launch

Gazebo simulation

$ roslaunch hj_object_detect hj_object_detect_rviz.launch sim:=true
$ roslaunch hj_object_detect hj_jsk_test.launch sim:=true

Launch tree

hj_object_detect.launch

  • bringup_d435.launch
    • rs_rgbd.launch
  • hj_darknet.launch
    • config: $(find darknet_ros)/yolo_network_config/weights
    • weight: $(find darknet_ros)/yolo_network_config/cfg
    • parameter: $(find hj_object_detect)/config/hj_darknet_config.yaml
    • parameter: $(find darknet_ros)/config/hj_p.yaml

hj_jsk_test.launch

  • point cloud nodelet
  • jsk_pcl_utils/LabelToClusterPointIndices nodelet
  • jsk_pcl/ClusterPointIndicesDecomposer

Note

  • If the coordinate of detected hammer object is not visible, try to this process.
$ cd ~/catkin_ws/src
$ cd jsk_common
$ rosdep install -y -r --from-path . --ignore-src

Video

Click image to link to YouTube video.
plier_check

About

Object detecting and estimation pose using darknet_ros with jsk_pcl

License:Apache License 2.0


Languages

Language:C++ 67.6%Language:CMake 16.4%Language:Python 15.9%