Mattjesc / OS-Verilog-Copilot-FT-LLM-Unsloth

Open Source Verilog Copilot: Fine Tune LLM: Fine-Tuning LLM with QLoRA and VeriGen Dataset using Unsloth

Repository from Github https://github.comMattjesc/OS-Verilog-Copilot-FT-LLM-UnslothRepository from Github https://github.comMattjesc/OS-Verilog-Copilot-FT-LLM-Unsloth

Open Source Verilog Copilot: Fine Tune LLM with QLoRA and VeriGen Dataset using Unsloth

Overview

This project aims to develop an open-source Verilog copilot by fine-tuning large language models (LLMs) using QLoRA, PEFT, and Unsloth on the Verigen dataset. The copilot assists in generating high-quality Verilog code, making the hardware design process more efficient and less error-prone.

a38a5d2f-e308-446e-88b1-3cfe5b2078b8

Disclaimer: This project is designed to be feasible within the constraints of a single GPU setup. Model selection, quantization, and training parameters are optimized for an RTX 3090 GPU. The performance and capabilities of the project may vary based on the hardware specifications. Additionally, library and dependency versions may change over time, affecting the results.

Project Directory Structure

├── llama3_finetune
│   └── checkpoint-60
│       ├── adapter_config.json
│       ├── adapter_model.safetensors
│       ├── optimizer.pt
│       ├── README.md
│       ├── rng_state.pth
│       ├── scheduler.pt
│       ├── special_tokens_map.json
│       ├── tokenizer_config.json
│       ├── tokenizer.json
│       ├── trainer_state.json
│       ├── training_args.bin
├── unsloth_llama3_8b
│   ├── config.json
│   ├── generation_config.json
│   ├── model-00001-of-00002.safetensors
│   ├── model-00002-of-00002.safetensors
│   ├── model.safetensors.index.json
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   ├── tokenizer.json
│   ├── tokenizer.model
├── venv
├── app.py
├── download_unsloth_llama3_8b.py
├── finetune_llama3.py
├── README.md
└── requirements.txt

Workflow

graph TD;
    A[Environment Setup] --> B[Create Virtual Environment]
    B --> C[Install Dependencies];
    C --> D[Clone Repository];
    D --> E[Model Preparation];
    E --> F[Download Original Model];
    E --> G[Download Tokenizer];
    F --> H[Save Original Model];
    G --> I[Save Tokenizer];
    H --> J[Fine-Tuning];
    I --> J;
    J --> K[Prepare Training Data];
    K --> L[Run Fine-Tuning Script];
    L --> M[Save Fine-Tuned Model];
    M --> N[Testing & Deployment];
    N --> O[Load Fine-Tuned Model];
    O --> P[Initialize Gradio Interface];
    P --> Q[User Interaction];
    P --> R[Run Inference Tests];
Loading

Environment Setup

  1. Clone the Repository:

    git clone <https://github.com/Mattjesc/OS-Verilog-Copilot-FT-LLM-Unsloth>
    cd verilog_copilot_project
  2. Set Up Virtual Environment:

    python -m venv venv
    source venv/bin/activate
  3. Install Dependencies:

    pip install -r requirements.txt

Model Preparation

graph TD;
    A[Initialize Model Directory] --> B[Download Original Model];
    B --> C[Verify Model Integrity];
    C --> D[Save Model to Disk];
    D --> E[Download Tokenizer];
    E --> F[Verify Tokenizer Integrity];
    F --> G[Save Tokenizer to Disk];
Loading
  1. Download Original Model:

    python download_unsloth_llama3_8b.py
  2. Download Fine-Tuned Model: Ensure your fine-tuned model files are placed in output/llama3_finetune/checkpoint-60.

Fine-Tuning

graph TD;
    A[Load Pre-trained Model] --> B[Apply QLoRA & PEFT Techniques];
    B --> C[Load Training Data];
    C --> D[Configure Training Parameters];
    D --> E[Run Training Script];
    E --> F[Monitor Training Progress];
    F --> G[Save Checkpoints Regularly];
    G --> H[Save Final Fine-Tuned Model];
Loading

This project uses the Unsloth package for quantization and fine-tuning due to its efficiency in resource-constrained environments. The fine-tuning script is provided in finetune_llama3.py.

Example Fine-Tuning log:

🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.
config.json: 100%|████████████████████████████████████████████████████| 1.20k/1.20k [00:00<00:00, 16.3MB/s]
==((====))==  Unsloth: Fast Llama patching release 2024.6
   \\   /|    GPU: NVIDIA GeForce RTX 3090. Max memory: 24.0 GB. Platform = Linux.
O^O/ \_/ \    Pytorch: 2.3.1+cu121. CUDA = 8.6. CUDA Toolkit = 12.1.
\        /    Bfloat16 = TRUE. Xformers = 0.0.26.post1. FA = False.
 "-____-"     Free Apache license: http://github.com/unslothai/unsloth
model.safetensors: 100%|██████████████████████████████████████████████| 5.70G/5.70G [12:13<00:00, 7.77MB/s]
generation_config.json: 100%|█████████████████████████████████████████████| 172/172 [00:00<00:00, 2.25MB/s]
tokenizer_config.json: 100%|███████████████████████████████████████████| 50.6k/50.6k [00:00<00:00, 230kB/s]
tokenizer.json: 100%|█████████████████████████████████████████████████| 9.09M/9.09M [00:02<00:00, 4.39MB/s]
special_tokens_map.json: 100%|████████████████████████████████████████████| 464/464 [00:00<00:00, 6.22MB/s]
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Unsloth 2024.6 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.
Map: 100%|█████████████████████████████████████████████████| 108971/108971 [02:23<00:00, 760.05 examples/s]
max_steps is given, it will override any value given in num_train_epochs
==((====))==  Unsloth - 2x faster free finetuning | Num GPUs = 1
   \\   /|    Num examples = 108,971 | Num Epochs = 1
O^O/ \_/ \    Batch size per device = 2 | Gradient Accumulation steps = 4
\        /    Total batch size = 8 | Total steps = 60
 "-____-"     Number of trainable parameters = 41,943,040
{'loss': 0.8702, 'grad_norm': 0.23352308571338654, 'learning_rate': 5e-06, 'epoch': 0.0}                   
{'loss': 0.7185, 'grad_norm': 0.20793183147907257, 'learning_rate': 1e-05, 'epoch': 0.0}                   
{'loss': 0.8745, 'grad_norm': 0.2324608415365219, 'learning_rate': 1.5e-05, 'epoch': 0.0}                  
{'loss': 1.0737, 'grad_norm': 0.2528074085712433, 'learning_rate': 2e-05, 'epoch': 0.0}                    
{'loss': 0.8528, 'grad_norm': 0.2972744405269623, 'learning_rate': 2.5e-05, 'epoch': 0.0}                  
{'loss': 1.1018, 'grad_norm': 0.2701590955257416, 'learning_rate': 3e-05, 'epoch': 0.0}                    
{'loss': 1.0596, 'grad_norm': 0.23280449211597443, 'learning_rate': 3.5e-05, 'epoch': 0.0}                 
{'loss': 0.8212, 'grad_norm': 0.20562133193016052, 'learning_rate': 4e-05, 'epoch': 0.0}                   
{'loss': 0.9318, 'grad_norm': 0.21799467504024506, 'learning_rate': 4.5e-05, 'epoch': 0.0}                 
{'loss': 0.7615, 'grad_norm': 0.3326791524887085, 'learning_rate': 5e-05, 'epoch': 0.0}                    
{'loss': 0.7269, 'grad_norm': 0.20206224918365479, 'learning_rate': 4.9e-05, 'epoch': 0.0}                 
{'loss': 1.0058, 'grad_norm': 0.27746373414993286, 'learning_rate': 4.8e-05, 'epoch': 0.0}                 
{'loss': 0.8164, 'grad_norm': 0.3658866286277771, 'learning_rate': 4.7e-05, 'epoch': 0.0}                  
{'loss': 0.9976, 'grad_norm': 0.23685322701931, 'learning_rate': 4.600000000000001e-05, 'epoch': 0.0}      
{'loss': 0.7798, 'grad_norm': 0.25426965951919556, 'learning_rate': 4.5e-05, 'epoch': 0.0}                 
{'loss': 0.711, 'grad_norm': 0.2023640125989914, 'learning_rate': 4.4000000000000006e-05, 'epoch': 0.0}    
{'loss': 1.1191, 'grad_norm': 0.32870209217071533, 'learning_rate': 4.3e-05, 'epoch': 0.0}                 
{'loss': 0.9139, 'grad_norm': 0.18491601943969727, 'learning_rate': 4.2e-05, 'epoch': 0.0}                 
{'loss': 0.7207, 'grad_norm': 0.22200925648212433, 'learning_rate': 4.1e-05, 'epoch': 0.0}                 
{'loss': 1.1067, 'grad_norm': 0.23293443024158478, 'learning_rate': 4e-05, 'epoch': 0.0}                   
{'loss': 0.7371, 'grad_norm': 0.37893006205558777, 'learning_rate': 3.9000000000000006e-05, 'epoch': 0.0}  
{'loss': 0.9419, 'grad_norm': 0.15902665257453918, 'learning_rate': 3.8e-05, 'epoch': 0.0}                 
{'loss': 0.9036, 'grad_norm': 0.2646190822124481, 'learning_rate': 3.7e-05, 'epoch': 0.0}                  
{'loss': 0.8309, 'grad_norm': 0.18428869545459747, 'learning_rate': 3.6e-05, 'epoch': 0.0}                 
{'loss': 0.9702, 'grad_norm': 0.32114851474761963, 'learning_rate': 3.5e-05, 'epoch': 0.0}                 
{'loss': 1.1126, 'grad_norm': 0.32829004526138306, 'learning_rate': 3.4000000000000007e-05, 'epoch': 0.0}  
{'loss': 1.0442, 'grad_norm': 0.25829723477363586, 'learning_rate': 3.3e-05, 'epoch': 0.0}                 
{'loss': 0.6913, 'grad_norm': 0.26512542366981506, 'learning_rate': 3.2000000000000005e-05, 'epoch': 0.0}  
{'loss': 0.8817, 'grad_norm': 0.18741697072982788, 'learning_rate': 3.1e-05, 'epoch': 0.0}                 
{'loss': 0.8038, 'grad_norm': 0.20668251812458038, 'learning_rate': 3e-05, 'epoch': 0.0}                   
{'loss': 0.741, 'grad_norm': 0.20079535245895386, 'learning_rate': 2.9e-05, 'epoch': 0.0}                  
{'loss': 0.9376, 'grad_norm': 0.24099944531917572, 'learning_rate': 2.8000000000000003e-05, 'epoch': 0.0}  
{'loss': 0.8542, 'grad_norm': 0.2100389450788498, 'learning_rate': 2.7000000000000002e-05, 'epoch': 0.0}   
{'loss': 0.8448, 'grad_norm': 0.18733343482017517, 'learning_rate': 2.6000000000000002e-05, 'epoch': 0.0}  
{'loss': 1.0157, 'grad_norm': 0.22578302025794983, 'learning_rate': 2.5e-05, 'epoch': 0.0}                 
{'loss': 0.7649, 'grad_norm': 0.29417797923088074, 'learning_rate': 2.4e-05, 'epoch': 0.0}                 
{'loss': 0.9213, 'grad_norm': 0.24903401732444763, 'learning_rate': 2.3000000000000003e-05, 'epoch': 0.0}  
{'loss': 0.8798, 'grad_norm': 0.17288818955421448, 'learning_rate': 2.2000000000000003e-05, 'epoch': 0.0}  
{'loss': 1.0014, 'grad_norm': 0.2931334674358368, 'learning_rate': 2.1e-05, 'epoch': 0.0}                  
{'loss': 0.6411, 'grad_norm': 0.27209487557411194, 'learning_rate': 2e-05, 'epoch': 0.0}                   
{'loss': 0.8347, 'grad_norm': 0.2903622090816498, 'learning_rate': 1.9e-05, 'epoch': 0.0}                  
{'loss': 0.7657, 'grad_norm': 0.22751733660697937, 'learning_rate': 1.8e-05, 'epoch': 0.0}                 
{'loss': 0.7963, 'grad_norm': 0.3043607771396637, 'learning_rate': 1.7000000000000003e-05, 'epoch': 0.0}   
{'loss': 0.5493, 'grad_norm': 0.19301261007785797, 'learning_rate': 1.6000000000000003e-05, 'epoch': 0.0}  
{'loss': 0.8743, 'grad_norm': 0.25478699803352356, 'learning_rate': 1.5e-05, 'epoch': 0.0}                 
{'loss': 1.0055, 'grad_norm': 0.23564529418945312, 'learning_rate': 1.4000000000000001e-05, 'epoch': 0.0}  
{'loss': 0.813, 'grad_norm': 0.3418455421924591, 'learning_rate': 1.3000000000000001e-05, 'epoch': 0.0}    
{'loss': 0.8584, 'grad_norm': 0.22712750732898712, 'learning_rate': 1.2e-05, 'epoch': 0.0}                 
{'loss': 0.8951, 'grad_norm': 0.28081202507019043, 'learning_rate': 1.1000000000000001e-05, 'epoch': 0.0}  
{'loss': 0.955, 'grad_norm': 0.30049294233322144, 'learning_rate': 1e-05, 'epoch': 0.0}                    
{'loss': 0.6989, 'grad_norm': 0.23726198077201843, 'learning_rate': 9e-06, 'epoch': 0.0}                   
{'loss': 0.6038, 'grad_norm': 0.29510775208473206, 'learning_rate': 8.000000000000001e-06, 'epoch': 0.0}   
{'loss': 0.8343, 'grad_norm': 0.2571757733821869, 'learning_rate': 7.000000000000001e-06, 'epoch': 0.0}    
{'loss': 0.7887, 'grad_norm': 0.24695414304733276, 'learning_rate': 6e-06, 'epoch': 0.0}                   
{'loss': 0.7763, 'grad_norm': 0.2661164104938507, 'learning_rate': 5e-06, 'epoch': 0.0}                    
{'loss': 0.7923, 'grad_norm': 0.25235313177108765, 'learning_rate': 4.000000000000001e-06, 'epoch': 0.0}   
{'loss': 0.7552, 'grad_norm': 0.2831136882305145, 'learning_rate': 3e-06, 'epoch': 0.0}                    
{'loss': 0.7584, 'grad_norm': 0.2157314568758011, 'learning_rate': 2.0000000000000003e-06, 'epoch': 0.0}   
{'loss': 1.042, 'grad_norm': 0.32682257890701294, 'learning_rate': 1.0000000000000002e-06, 'epoch': 0.0}   
{'loss': 0.9465, 'grad_norm': 0.2684042155742645, 'learning_rate': 0.0, 'epoch': 0.0}                      
{'train_runtime': 674.1454, 'train_samples_per_second': 0.712, 'train_steps_per_second': 0.089, 'train_loss': 0.863763881723086, 'epoch': 0.0}
100%|██████████████████████████████████████████████████████████████████████| 60/60 [11:14<00:00, 11.24s/it]
Fine-tuning completed

Testing

graph TD;
    A[Load Fine-Tuned Model] --> B[Load Tokenizer];
    B --> C[Initialize Gradio Interface];
    C --> D[Create Input Text Box];
    C --> E[Create Output Text Box];
    D --> F[User Inputs Query];
    F --> G[Generate Response using Model];
    G --> H[Display Response in Output Box];
    E --> I[User Selects Model Version];
    I --> J[Toggle between Original and Fine-Tuned Models];
    J --> F;
    G --> K[Document Results and Observations];
Loading

To test the model, run the app.py script. This script uses Gradio to create a web interface for testing the original and fine-tuned models.

python app.py

Developed a simple Gradio UI for this project where you can switch back and forth between the original and fine-tuned models to compare their outputs.

Justifications and Explanations

Why Quantize Using Unsloth?

Quantization reduces the model size and memory usage, making it feasible to run large models on resource-limited hardware like a single RTX 3090 GPU. Unsloth specifically optimizes models for efficient inference without significant loss in performance.

Why Use QLoRA and PEFT?

QLoRA and PEFT (Parameter-Efficient Fine-Tuning) are chosen because they allow for efficient fine-tuning of large language models. These techniques minimize the need for extensive computational resources by updating only a subset of the model parameters, making them ideal for users with limited hardware.

Training Arguments and Settings

The training settings are chosen to balance performance and resource constraints. For example:

  • Batch Size: Set to fit within GPU memory limits.
  • Learning Rate and Epochs: Tuned to ensure the model converges without overfitting.
  • Gradient Accumulation: Used to simulate larger batch sizes.

Credits

This project utilizes the Verigen dataset for training and evaluation. Special thanks to the authors:

  • Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri, Siddharth Garg.

Benchmarking Large Language Models for Automated Verilog RTL Code Generation

About

Open Source Verilog Copilot: Fine Tune LLM: Fine-Tuning LLM with QLoRA and VeriGen Dataset using Unsloth


Languages

Language:Python 100.0%