MASILab / lmsignatures

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Longitudinal multimodal transformer integrating imaging and latent clinical signatures from routine ehrs for pulmonary nodule classification.

Thomas Z. Li, John M. Still, Kaiwen Xu, Ho Hin Lee, Leon Y. Cai, Aravind R. Krishnan, Riqiang Gao, Mirza S. Khan, Sanja Antic, Michael Kammer, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman, Thomas A. Lasko

Provisional accepted (top 14%) at MICCAI 2023

[arXiv]

Please cite if you find this helpful. Disclaimer: this repo is in development and has not been packaged or robustly documented.

methods

Data prep

Imaging

We use the pipeline from Liao et al [1]. to preprocess CT scans and propose ROIs for detected nodules.

Save preprocessed scans as id_clean.npy and save proposed ROIs as id_pbb.npy, where id is the session level unique identifier (UID).

Latent clinical signatures approach

Pipeline for inferring latent clinical signatures: https://github.com/ComputationalMedicineLab/cml_data_tools

Input tabular file should be a csv with headers (in order):

pid id session shifted_scan_date Duration lung_cancer exp-000 exp-001 .... exp-NNNN
subject level UID session level UID order of the CT session within a subject (i.e. 0,1,2,etc) session acquisition date YYYY-mm-dd days between this session and the subject's latest session binary class label expression of signature 1 expression of signature 2 ... expression of last signature

Code2vec approach

Requires 3 input files: tabular file as shown above (signatures not needed), ICD codes, and ICD10 embedding from Finch et al [2]

The ICD codes is a csv in the structure of:

pid ICD_CODE
subject level UID ICD9 or ICD10 code

A copy of the ICD9 to ICD10 dictionary from https://github.com/bhanratt/ICD9CMtoICD10CM is provided for convenience in this repo. This is used to convert all codes to ICD10 internally.

Usage

pip install -r requirements.txt

Entry point to running experiments:

python3 main.py --config [CONFIG_FILE]
    --single_train  single phase training
    --single_test   single phase test
    --cv_train      cross validation training
    --cv_test       test using cross validation folds. use the same random seed as cv_train phase
    --folds         number of cross validation folds

Example of pretraining on imaging only data and finetuning on multimodal data with clinical signature approach:

python3 main.py --config tdsig_nlst --single_train
python3 main.py --config tdsig_imageehr --cv_train --folds 5
python3 main.py --config tdsig_imageehr --cv_test --folds 5

Cite

Li, T.Z., Still, J.M., Xu, K., Lee, H.H., Cai, L.Y., Krishnan, A.R., Gao, R., Khan, M.S., Antic, S., Kammer, M., Sandler, K.L., Maldonado, F., Landman, B.A., Lasko, T.A.: Longitudinal multimodal transformer integrating imaging and latent clinical signatures from routine ehrs for pulmonary nodule classification. arXiv preprint arXiv:2304.02836 (2023)

@article{litz2023lm,
    Author = {Thomas Z. Li and John M. Still and Kaiwen Xu and Ho Hin Lee and Leon Y. Cai and Aravind R. Krishnan and Riqiang Gao and Mirza S. Khan and Sanja Antic and Michael Kammer and Kim L. Sandler and Fabien Maldonado and Bennett A. Landman and Thomas A. Lasko},
    Title = {Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification},
    Year = {2023},
    Journal={arXiv preprint arXiv:2304.02836},
}

References

  1. Liao, F., Liang, M., Li, Z., Hu, X., Song, S.: Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network. IEEE transactions on neural networks and learning systems 30(11), 3484–3495 (2019)
  2. Finch, A., Crowell, A., Bhatia, M., Parameshwarappa, P., Chang, Y.C., Martinez, J., Horberg, M.: Exploiting hierarchy in medical concept embedding. JAMIA open 4(1). (2021)

About


Languages

Language:Python 100.0%