BestSonny / SparsePipedream

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

SparsePipe: Parallel Deep Learning for 3D Point Clouds

This repository contains the source code implementation of the paper "SparsePipe: Parallel Deep Learning for 3D Point Clouds". This code is implemented based on PipeDream's code avilable at https://github.com/msr-fiddle/pipedream

Directory Structure

graph

This contains a Python implementation of a graph, used by the SparsePipe profiler and optimizer. Profiling scripts in profiler generate graph profiles, that can then be ingested by the optimizer located in optimizer to generate a partitioned model, that can then be fed to the SparsePipe runtime.

profiler

Instrumented PyTorch applications which return profiles that can be ingested by the optimizer.

optimizer

A Python implementation of SparsePipe's optimizer that would generate the model partition for specified number of GPUs.

runtime

SparsePipe's runtime, which implements model parallelism, as well as input pipelining in PyTorch. This can be fused with data parallelism to give hybrid model and data parallelism, and input pipelining.

Setup

Software Dependencies

To run SparsePipe, you will need a NVIDIA GPU, GPU driver, nvidia-docker2, and Python 3. On a Linux server with NVIDIA GPU(s) and Ubuntu 16.04, these dependencies can be installed as follows.

All dependencies are in the nvcr.io/nvidia/pytorch:20.03-py3 container, which can be downloaded using,

nvidia-docker pull nvcr.io/nvidia/pytorch:20.03-py3

To run the SparsePipe profiler and Minkowski code, you will need to build a new Docker image, which can be done using the Dockerfile in this directory. Note that the Dockerfile has a dependency on the requirements.txt files in this directory. This container can be built using,

docker build --tag <CONTAINER_NAME> .

The PyTorch Docker Container can then be run using,

nvidia-docker run -it -v /mnt:/mnt --ipc=host --net=host <CONTAINER_NAME> /bin/bash

Data

Minkowski / dense_point_cloud

All sparse or dense point cloud experiments are run using the ModelNet40 dataset.

Image Classification

All image classification experiments are run using the ImageNet ILSVC 2012 dataset This can be downloaded using the following command (within the docker container above),

cd scripts; python download_imagenet.py --data_dir <DATASET_DIR>

Note that the ImageNet dataset is about 145GB, so this download script can take some time.

End-to-end Workflow

To run a demo, run the following commands (the optimizer and runtime have been verified to work unchanged in nvcr.io/nvidia/pytorch:20.03-py3). More detailed instructions for each of the individual components are in the corresponding directory READMEs.

[from SparsePipedream/profiler/Minkowski] Note that the profiling step must be run with only a single GPU (hence the CUDA_VISIBLE_DEVICES=0 before the command).

CUDA_VISIBLE_DEVICES=0 python main.py -a minkvgg --voxel_size 0.02 --batch_size 64 --dataset <path to ImageNet directory> --verbose

[from SparsePipedream/optimizer] In hete_files, construct your own server file (example is given in test_server.txt, which specifies the server name, GPU type, GPU number, and the profile file location for each GPU type)

Run original Pipedream optimizer

python optimizer_graph_hierarchical.py -f ../profiler/Minkowski/profiles/minkvgg/minkvgg_v0.02_b64_RTX/graph.txt -n 4 -b 100000000 --activation_compression_ratio 1 -o minkvgg_partitioned

Run SparsePipe heterogeneous optimizer

python optimizer_graph_hierarchical_hybrid.py -f hete_files/test_server.txt -b 100000000 --activation_compression_ratio 1 -o minkvgg_partitioned

[from SparsePipedream/optimizer]

python convert_graph_to_model_for_mink.py -f minkvgg_partitioned/gpus=4.txt -n MinkVggPartitioned -a minkvgg16 -o ../runtime/Minkowski/models/vgg16bn/gpus=4 --stage_to_num_ranks 0:3,1:1

[from SparsePipedream/runtime/Minkowski; run on 4 GPUs (including a single server with 4 GPUs)]

python main_with_runtime.py --module models.vgg16bn.gpus=4 -b 64 --data_dir <path to ImageNet> --rank 0 --local_rank 0 --master_addr <master IP address> --config_path models/vgg16bn/gpus=4/hybrid_conf.json --distributed_backend gloo
python main_with_runtime.py --module models.vgg16bn.gpus=4 -b 64 --data_dir <path to ImageNet> --rank 1 --local_rank 1 --master_addr <master IP address> --config_path models/vgg16bn/gpus=4/hybrid_conf.json --distributed_backend gloo
python main_with_runtime.py --module models.vgg16bn.gpus=4 -b 64 --data_dir <path to ImageNet> --rank 2 --local_rank 2 --master_addr <master IP address> --config_path models/vgg16bn/gpus=4/hybrid_conf.json --distributed_backend gloo
python main_with_runtime.py --module models.vgg16bn.gpus=4 -b 64 --data_dir <path to ImageNet> --rank 3 --local_rank 3 --master_addr <master IP address> --config_path models/vgg16bn/gpus=4/hybrid_conf.json --distributed_backend gloo

[from SparsePipedream/runtime] Or use the config file

python driver.py --config_file Minkowski/driver_configs/minkvgg16_2dp.yml --launch_single_container --mount_directories <directory/to/SparsePipedream>

master IP address here is the IP address of the rank 0 process. On a server with 4 GPUs, localhost can be specified.

When running DP setups, please use the nccl backend for optimal performance. When running hybrid setups, please use the gloo backend.

About

License:MIT License


Languages

Language:Python 99.2%Language:Cuda 0.4%Language:C++ 0.2%Language:Dockerfile 0.1%Language:Shell 0.1%