BTKForever / MST-plus-plus

"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction"

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

MST++

This is the implementation of our proposed solution "MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction". Our MST++ is mainly based on our work MST, which is accepted by CVPR 2022.

Illustration of MST

This repo includes:

  • Specification of dependencies.
  • Testing code (both development and challenge result).
  • Training code.
  • Pre-trained models.

1. Create Envirement:

2. Reproduce the development result:

(1) Download the pretrained model zoo from Google Drive and place them to ' /source_code/test_develop_code/model_zoo/'.

(2) Download the validation RGB images from Google Drive and place them to ' /source_code/test_develop_code/Valid_RGB/'.

(3) Test our models on the validation RGB images. The results will be saved in '/MST-plus-plus/test_develop_code/results_model_ensemble/submission/submission.zip' in the zip format.

cd /MST-plus-plus/test_develop_code/
python test.py --pretrained_model_path ./model_zoo/MstPlus_1stg_ps128_s8_norm.pth --outf ./exp/mst_plus_plus/

3. Reproduce the challenge result:

(1) Download the pretrained model zoo from Google Drive and place them to ' /MST-plus-plus/test_challenge_code/model_zoo/'.

(2) Download the testing RGB images from Google Drive and place them to ' /MST-plus-plus/test_challenge_code/Test_RGB/'.

(3) Test our models on the testing RGB images. The results will be saved in '/MST-plus-plus/test_challenge_code/results_model_ensemble/submission/submission.zip' in the zip format.

cd /MST-plus-plus/test_challenge_code/
python test.py --pretrained_model_path ./model_zoo/MST_plus_1stg_lr4e-4_s8_norm_DevValid.pth --outf ./exp/mst_plus_plus/

4. Training

(1) Data preparation:

  • Download training spectral images, training RGB images, validation spectral images, validation RGB images from the competition website.

  • Place the training spectral images and validation spectral images to "/MST-plus-plus/train_code/ARAD_1K/Train_Spec/".

  • Place the training RGB images and validation RGB images to "/MST-plus-plus/train_code/ARAD_1K/Train_RGB/".

  • Then the code are collected as the following form:

  |--MST-plus-plus
  |	|--test_challenge_code
  |	|--test_develop_code
  |	|--train_code  
  |	|	|--ARAD_1K 
  |	|	|	|--Train_Spec
  |	|       |       |	|--ARAD_1K_0001.mat
  |	|       |       |	|--ARAD_1K_0001.mat
  |	|       |       |	: 
  |	|       |       |	|--ARAD_1K_0950.mat
  |	|       |    	|--Train_RGB
  |	|       |    	|	|--ARAD_1K_0001.jpg
  |	|       |       |	|--ARAD_1K_0001.jpg
  |	|       |       |	: 
  |	|       |       |	|--ARAD_1K_0950.jpg

(2) To train a single model, run

cd /MST-plus-plus/train_code/
python main.py --method mst_plus_1stg --gpu_id 0 --batch_size 20 --init_lr 4e-4 --outf ./exp/ --data_root ./ARAD_1K/  --patch_size 128 --stride 8 -norm

Citation

@inproceedings{mst,
	title={Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction},
	author={Yuanhao Cai and Jing Lin and Xiaowan Hu and Haoqian Wang and Xin Yuan and Yulun Zhang and Radu Timofte and Luc Van Gool},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}

About

"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction"


Languages

Language:Python 100.0%