174high / pronto

Pronto - Legged Robot State Estimator - libraries, ROS wrapper and messages

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

CI

Introduction

Pronto is an efficient, versatile and modular EKF state estimator for both proprioceptive (inertial, kinematics) and exteroceptive (LIDAR, camera) sensor fusion. It has been used with a variety of inputs from sensors such as IMUs (Microstrain, KVH, XSense), LIDAR (Hokuyo, Velodyne), cameras (Carnegie Robotics Multisense SL, Intel RealSense) and joint kinematics.

Legged Robots

Pronto provided the state estimate that was used by MIT DRC team in the DARPA Robotics Challenge to estimate the position and motion of the Boston Dynamics Atlas robot.

image Pronto on Atlas

Since then, it has been adapted to estimate the motion of the NASA Valkyrie robot at the University of Edinburgh, the HyQ quadruped robot at the Istituto Italiano di Tecnologia, and the ANYmal quadruped robot at the University of Oxford.

image Pronto on HyQ

Micro Aerial Vehicles

Pronto was originally developed for Micro Aerial Vehicle state estimation. The modules specific to MAVs (e.g., altimeter, GPS) are not currently supported.

Software Overview

The algorithms (and their ROS wrappers) are written in C/C++ and organized as catkin packages. The repository consists of the following main modules:

  • pronto_core: core libraries that implment the filter, the state and basic measurement modules (e.g., IMU, pose update)
  • pronto_biped leg odometry measurement modules for humanoid robots (tested on Atlas and Valkyrie)
  • pronto_quadruped leg odometry libraries for a quadruped robot (tested on HyQ and ANYmal)
  • pronto_quadruped_commons abstract interfaces to perform leg odometry on a quadruped robot. This is a fork of the iit_commons package (see here).
  • *_ros ROS wrappers of the above modules
  • other support packages for filtering

Dependencies

Pronto depends on Eigen and Boost

System Requirements

The target operating system is Ubuntu 18.04 equipped with ROS Melodic.
Other versions of Ubuntu/ROS might work but they are not actively supported or tested.

Building the Code

Pronto is organized as a collection of catkin packages. To build the code, just run catkin build followed by the name of the packages you are interested to build.

Robot Implementation Example

To learn how to use Pronto on your robot, you can have a look at this repository, which contains a full implementation on the ANYmal quadruped robot.

Publications

If you use part of this work in academic context, please cite the following publication:

M. Camurri, M. Ramezani, S. Nobili, M. Fallon
Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios
in Frontiers on Robotics and AI, 2020 (PDF) DOI: 10.3389/frobt.2020.00068

@article{camurri2020frontiers,
  author = {Camurri, Marco and Ramezani, Milad and Nobili, Simona and Fallon, Maurice},   
  title = {{Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios}},      
  journal = {Frontiers in Robotics and AI},
  volume = {7},
  number = {68},
  pages = {1--18},     
  year = {2020},      
  url = {https://www.frontiersin.org/article/10.3389/frobt.2020.00068},
  doi = {10.3389/frobt.2020.00068},	
  issn = {2296-9144}
}

Previous related publications include:

S. Nobili, M. Camurri, V. Barasuol, M. Focchi, D.G. Caldwell, C. Semini, M. Fallon
Heterogeneous Sensor Fusion for Accurate State Estimation of Dynamic Legged Robots
in Proceedings of Robotics: Science and Systems XIII, 2017 (PDF) DOI: 10.15607/RSS.2017.XIII.007

@inproceedings{nobili2017rss,
    author = {Simona Nobili AND Marco Camurri AND Victor Barasuol AND Michele Focchi AND Darwin Caldwell AND Claudio Semini AND Maurice Fallon}, 
    title = {{Heterogeneous Sensor Fusion for Accurate State Estimation of Dynamic Legged Robots}}, 
    booktitle = {Proceedings of Robotics: Science and Systems}, 
    year = {2017}, 
    address = {Cambridge, Massachusetts}, 
    month = {July}, 
    doi = {10.15607/RSS.2017.XIII.007} 
}

M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D.G. Caldwell, C. Semini
Probabilistic Contact Estimation and Impact Detection for State Estimation of Quadruped Robots
in IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1023-1030, April 2017 (PDF) DOI: 10.1109/LRA.2017.2652491

@article{camurri2017ral,
      author={M. {Camurri} and M. {Fallon} and S. {Bazeille} and A. {Radulescu} and V. {Barasuol} and D. G. {Caldwell} and C. {Semini}},
      journal={IEEE Robotics and Automation Letters},
      title={{Probabilistic Contact Estimation and Impact Detection for State Estimation of Quadruped Robots}},
      year = {2017},
      volume = {2},
      number = {2},
      pages = {1023-1030},
      doi = {10.1109/LRA.2017.2652491},
      ISSN = {2377-3766},
      month = {April}}

M. Fallon, M. Antone, N. Roy, S. Teller
Drift-Free Humanoid State Estimation fusing Kinematic, Inertial and LIDAR sensing
2014 IEEE-RAS International Conference on Humanoid Robots (PDF) DOI:10.1109/HUMANOIDS.2014.7041346

@inproceedings{fallon2014humanoids,
author={M. F. {Fallón} and M. {Antone} and N. {Roy} and S. {Teller}},
booktitle={2014 IEEE-RAS International Conference on Humanoid Robots},
title={Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing},
year={2014},
volume={},
number={},
pages={112-119},
doi={10.1109/HUMANOIDS.2014.7041346},
ISSN={},
month={Nov},}

A. Bry, A. Bachrach, N. Roy
State Estimation for Aggressive Flight in GPS-Denied Environments Using Onboard Sensing
2012 IEEE International Conference on Robotics and Automation (PDF) DOI:10.1109/ICRA.2012.6225295

@inproceedings{bry2012icra,
author={A. {Bry} and A. {Bachrach} and N. {Roy}},
booktitle={2012 IEEE International Conference on Robotics and Automation},
title={State estimation for aggressive flight in GPS-denied environments using onboard sensing},
year={2012},
volume={},
number={},
pages={1-8},
doi={10.1109/ICRA.2012.6225295},
ISSN={},
month={May},}

Credits

Originally Developed by Adam Bry, Abe Bachrach and Nicholas Roy of the MIT Robust Robotics Group for Micro Aerial Vehicles.

Extended to support humanoid motion by Maurice Fallon with the help of the MIT DARPA Robotics Challenge Team.

Support for quadruped robots, full ROS conversion and logo design by Marco Camurri (IIT Dynamic Legged System Lab and ORI Dynamic Robot Systems Group)

Additional contributions from: Andy Barry, Pat Marion, Dehann Fourie, Marco Frigerio, Michele Focchi, Benoit Casseau.

License

Pronto is released under the LGPL v2.1 license. Please see the LICENSE file attached to this document for more information.

About

Pronto - Legged Robot State Estimator - libraries, ROS wrapper and messages

License:GNU Lesser General Public License v2.1


Languages

Language:C++ 96.4%Language:CMake 2.2%Language:Python 1.5%