zihangdai / mos

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Breaking the Softmax Bottleneck: A High-Rank Language Model

This is the code we used in our paper

Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

Zhilin Yang*, Zihang Dai*, Ruslan Salakhutdinov, William W. Cohen (*: equal contribution)

Preprint 2017

Requirements

Python 3.6, PyTorch 0.4.1

Notes on PyTorch update

The original implementation and tuning were based on PyTorch 0.2.0. The code base has been upgraded to be compatible with 0.4.1. To exactly reproduce the results in our paper, you would need to use PyTorch 0.2.0 and do git checkout 4c43dee3f8a0aacea759c07f10d8f80dc0bb9bb2 to roll back to the previous version.

Below are results of the current version on Penn Treebank as reported in #9 . One may need further tuning to match the original results.

MoS w/o finetune: Valid 58.34 Test 56.18

MoS: Valid 56.83 Test 54.64

MoS + dynamic evaluation: Valid 49.03 Test: 48.43

Download the data

./get_data.sh

Train the models (to reproduce our results)

Penn Treebank

First, train the model

python main.py --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 20.0 --epoch 1000 --nhid 960 --nhidlast 620 --emsize 280 --n_experts 15 --save PTB --single_gpu

Second, finetune the model

python finetune.py --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 25.0 --epoch 1000 --nhid 960 --emsize 280 --n_experts 15 --save PATH_TO_FOLDER --single_gpu

where PATH_TO_FOLDER is the folder created by the first step (concatenation of PTB with a timestamp).

Third, run dynamic evaluation

python dynamiceval.py --model PATH_TO_FOLDER/finetune_model.pt --lamb 0.075

WikiText-2 (Single GPU)

First, train the model

python main.py --epochs 1000 --data data/wikitext-2 --save WT2 --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --nhidlast 650 --emsize 300 --batch_size 15 --lr 15.0 --dropoutl 0.29 --small_batch_size 5 --max_seq_len_delta 20 --dropouti 0.55 --single_gpu

Second, finetune the model

python finetune.py --epochs 1000 --data data/wikitext-2 --save PATH_TO_FOLDER --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --emsize 300 --batch_size 15 --lr 20.0 --dropoutl 0.29 --small_batch_size 5 --max_seq_len_delta 20 --dropouti 0.55 --single_gpu

Third, run dynamic evaluation

python dynamiceval.py --data data/wikitext-2 --model PATH_TO_FOLDER/finetune_model.pt --epsilon 0.002

WikiText-2 (3 GPUs)

This will yield the same results as using one single GPU, but will be faster.

First, train the model

CUDA_VISIBLE_DEVICES=0,1,2 python main.py --epochs 1000 --data data/wikitext-2 --save WT2 --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --nhidlast 650 --emsize 300 --batch_size 15 --lr 15.0 --dropoutl 0.29 --small_batch_size 15 --max_seq_len_delta 20 --dropouti 0.55

Second, finetune the model

CUDA_VISIBLE_DEVICES=0,1,2 python finetune.py --epochs 1000 --data data/wikitext-2 --save PATH_TO_FOLDER --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --emsize 300 --batch_size 15 --lr 20.0 --dropoutl 0.29 --small_batch_size 15 --max_seq_len_delta 20 --dropouti 0.55

Third, run dynamic evaluation

python dynamiceval.py --data data/wikitext-2 --model PATH_TO_FOLDER/finetune_model.pt --epsilon 0.002

Acknowledgements

A large portion of this repo is borrowed from the following repos: https://github.com/salesforce/awd-lstm-lm and https://github.com/benkrause/dynamic-evaluation

About

License:MIT License


Languages

Language:Python 98.8%Language:Shell 1.2%