Gradient correlation similarity for efficient contrast preserving decolorization
% The Code is created based on the method described in the following paper:
% Q. Liu, P.X. Liu, W. Xie, Y. Wang, D. Liang, “GcsDecolor: Gradient correlation similarity for efficient contrast preserving decolorization,”
% IEEE Trans. Image Process., vol. 24, no. 9, pp. 2889-2904, 2015.
% Author: Q. Liu, P.X. Liu, W. Xie, Y. Wang, D. Liang
% Date : 02/7/2016
% Version : 1.0
% The code and the algorithm are for non-comercial use only.
% Copyright 2016, Department of Electronic Information Engineering, Nanchang University.
% The current version is not optimized.
% GcsDecolor2 - contrast preserving color-to-gray via Gradient correlation similarity
% S = GcsDecolor2(Im, Lpp) performs contrast preserving decolorization on color image Im, with controling parameter Lpp
%
% Paras:
% @Im : Input image (double), only color images are acceptable.
% @Lpp : Controlling parameter defined in [1]. 0.25 by default.
%
% Example
% ==========
% Im = im2double(imread('23.png'));
% gIm = GcsDecolor2(Im); % Default Parameters (Lpp = 0.25)
% figure, imshow(Im), figure, imshow(gIm);
-
Log-Euclidean Metrics for Contrast Preserving Decolorization [Paper] [Code]
-
Semiparametric Decolorization With Laplacian-Based Perceptual Quality Metric [Paper] [Code]
-
Variable augmented neural network for decolorization and multi-exposure fusion [Paper] [Code] [Slide]
-
Color-to-gray Conversion on Wallpaper Dataset [Dataset]