Hiroaki Yamagiwa's repositories

segment-anything-edge-detection

Unofficial edge detection implementation using the Automatic Mask Generation (AMG) of the Segment Anything Model (SAM).

SCESAME

Zero-Shot Edge Detection with SCESAME: Spectral Clustering-based Ensemble for Segment Anything Model Estimation

WSMD

Improving word mover’s distance by leveraging self-attention matrix

OT-Seq2Seq-PyTorch

an unofficial PyTorch implementation of ICLR 2019 paper IMPROVING SEQUENCE-TO-SEQUENCE LEARNING VIA OPTIMAL TRANSPORT

Language:PythonStargazers:5Issues:1Issues:0

Cosine-Similarity-via-ICA

Revisiting Cosine Similarity via Normalized ICA-transformed Embeddings

Stargazers:2Issues:0Issues:0

dendro-thresh-cluster

In the dendrogram generated from sklearn.cluster.AgglomerativeClustering, it is difficult to understand the clustering to which each node belongs for each threshold. dendro-thresh-cluster is a program that shows the clustering to which each node belongs for each threshold.

Language:PythonStargazers:1Issues:1Issues:0

Axis-Tour

Axis Tour: Word Tour Determines the Order of Axes in ICA-transformed Embeddings

Language:PythonLicense:MITStargazers:0Issues:1Issues:0

baby-steps-of-rl-ja

Pythonで学ぶ強化学習 -入門から実践まで- サンプルコード

Language:Jupyter NotebookLicense:Apache-2.0Stargazers:0Issues:0Issues:0
Language:PythonStargazers:0Issues:1Issues:0

deep-learning-from-scratch

『ゼロから作る Deep Learning』のリポジトリ

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

deep-learning-with-keras-ja

『直感 Deep Learning』のリポジトリ

Language:PythonStargazers:0Issues:0Issues:0

gihyo-docker-kuberbetes

[技術評論社] Docker/Kubernetes 実践コンテナ開発入門

Language:GoStargazers:0Issues:0Issues:0

Nand2Tetris

Computer implementation as described in "The Elements of Computing Systems"

Language:AssemblyStargazers:0Issues:0Issues:0

Norm-and-Variance

Norm of Mean Contextualized Embeddings Determines their Variance

Stargazers:0Issues:0Issues:0

SentEval

A python tool for evaluating the quality of sentence embeddings.

Language:PythonLicense:NOASSERTIONStargazers:0Issues:0Issues:0

transformers

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0
Stargazers:0Issues:0Issues:0