Yuanhao Zhai (yhZhai)

yhZhai

User data from Github https://github.com/yhZhai

Company:State University of New York at Buffalo

Location:New York

Home Page:yhzhai.com

GitHub:@yhZhai

Yuanhao Zhai's repositories

mcm

[NeurIPS 2024] Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation

Language:PythonLicense:Apache-2.0Stargazers:60Issues:4Issues:12

idol

[ECCV 2024] IDOL: Unified Dual-Modal Latent Diffusion for Human-Centric Joint Video-Depth Generation

WSCL

[ICCV 2023] Official implementation of paper "Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning".

Language:PythonLicense:MITStargazers:29Issues:2Issues:14

ATOM

[ACM MM 2023] Official implementation of paper "Language-guided Human Motion Synthesis with Atomic Actions".

Language:PythonLicense:MITStargazers:28Issues:1Issues:1

SOAR

[ICCV 2023] Official implementation of paper "SOAR: Scene-debiasing Open-set Action Recognition".

Language:PythonLicense:Apache-2.0Stargazers:10Issues:2Issues:1

BMN-Boundary-Matching-Network

A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generation", which is accepted in ICCV 2019.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

CGDL-for-Open-Set-Recognition

Code for CVPR2020 paper: Conditional Gaussian Distribution Learning for Open Set Recognition

Language:PythonStargazers:0Issues:0Issues:0

DETAD

This repository is intended to host the diagnosis tool for analyzing temporal action localization algorithms. This tool is first presented as part of our DETAD paper.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

depthstillation

Demo code for paper "Learning optical flow from still images", CVPR 2021.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

detr

End-to-End Object Detection with Transformers

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

diffusers

🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0
Language:Vim ScriptLicense:MITStargazers:0Issues:0Issues:0
Stargazers:0Issues:1Issues:0

gpu-load-watcher

Simple script for watching GPU usage on both system-wide and per-user basis.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0
Language:PythonStargazers:0Issues:0Issues:0

mmaction2

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

open_clip

An open source implementation of CLIP.

Language:Jupyter NotebookLicense:NOASSERTIONStargazers:0Issues:0Issues:0

peft

🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

PoseFormerV2

The project is an official implementation of our paper "PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estimation".

Language:PythonStargazers:0Issues:0Issues:0

ProdL

[Doc] Productive Deep Learner

Language:TeXStargazers:0Issues:0Issues:0
Language:PythonLicense:BSD-3-ClauseStargazers:0Issues:0Issues:0

SelfBlendedImages

[CVPR 2022 Oral] Detecting Deepfakes with Self-Blended Images https://arxiv.org/abs/2204.08376

Language:PythonLicense:NOASSERTIONStargazers:0Issues:0Issues:0

SLADD

Official code for Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection (CVPR 2022 oral)

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

sleek-beamer

LaTeX sleek beamer template

Language:TeXStargazers:0Issues:0Issues:0

Swin-Transformer

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

video-generation-survey

A reading list of video generation

Stargazers:0Issues:0Issues:0

video-to-pose3D

Convert video to 3D pose in one-key.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

video_features

Extract video features from raw videos using multiple GPUs. We support RAFT and PWC flow frames as well as I3D, R(2+1)D, VGGish, ResNet features.

Language:PythonLicense:GPL-3.0Stargazers:0Issues:0Issues:0
Language:PythonLicense:MITStargazers:0Issues:1Issues:0
Language:HTMLStargazers:0Issues:1Issues:0