yangyin2016 / ENet_PyTorch

Implementation of ENet (A Deep Neural Network Architecture for Real-Time Semantic Segmentation using PyTorch

Repository from Github https://github.comyangyin2016/ENet_PyTorchRepository from Github https://github.comyangyin2016/ENet_PyTorch

ENet_PyTorch

Implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation using PyTorch (v.1.10)

This implementation is validated on the CamVid dataset. The pre-trained of ENet trained with CamVid is available here

Dataset Type Classes Input resolution Batch size Epochs Mean IoU (%) GFLOPS Parameters
CamVid Original 11 480x360 10 - 58.3 3.83 0.37M
CamVid Implementation 11 480x360 10 100 58.6 2.34 0.35M

image

To Use

  1. Clone the repository
git clone https://github.com/ntkhoa95/ENet_PyTorch.git
cd ENet_PyTorch
  1. Download the CamVid datasets

Download the CamVid dataset and unzip to ./content/camvid/

wget https://www.dropbox.com/s/pxcz2wdz04zxocq/CamVid.zip?dl=1 -O CamVid.zip
unzip CamVid.zip
  1. Use command to train the model
python init.py --mode train -iptr ./content/camvid/train/ -lptr ./content/camvid/trainannot/
  1. Use command to test model
python init.py --mode test -m ./content/checkpoint/camvid/best_model.pth -i ./content/camvid/test/0001TP_008550.png
  1. Use --help to get more commands
python init.py --help

Reference

  1. A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

About

Implementation of ENet (A Deep Neural Network Architecture for Real-Time Semantic Segmentation using PyTorch

License:MIT License


Languages

Language:Python 100.0%