xeokit / sdk

Next-generation alpha-status xeokit viewer in development

Home Page:https://xeokit.github.io/sdk/docs/api/index.html

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

@xeokit

Welcome to the xeokit SDK - a flexible and powerful tool for creating stunning visualizations of AECO models in your browser.

Built with TypeScript, xeokit offers lightning-fast loading and rendering of even the most complex models, while using minimal system resources.

The scene graph works seamlessly on both browser and NodeJS platforms, allowing you to create, convert and provide content for the model viewer.

Benefit from built-in support for multiple canvases, utility libraries with complete documentation, and the ability to import/export models as industry-standard AECO file formats. Collaborate with other BIM software via BCF Viewpoints and bring your AECO models to life with xeokit.

Table of Contents

  1. Usage Examples
  2. Modules
  3. Examples
  4. Project development
  5. License
  6. Credits

Preparing the project:

Usage examples

Work in progress;

Modules

Scene Graph

The SDK represents models in a scene graph that include the model's objects, geometries, and materials. This scene graph works on both the browser and NodeJS platforms and can be used to create models, convert between model formats, and provide content for the SDK's model viewer.

Package Modules Description
@xeokit/scene @xeokit/scene Scene graph that contains model representations (geometries, materials etc.)

Data Graph

The SDK employs a generic entity-relationship data graph to manage model semantics, which includes entities, properties, and relationships. This data graph is compatible with both the browser and NodeJS and facilitates model generation, format conversion, and content navigation within the SDK's model viewer.

Package Modules Description
@xeokit/data @xeokit/data Entity-relationship graph that contains model semantic data.

Model Viewer

The SDK contains a high-performance Web viewer for displaying our model representations. Through a pluggable renderer strategy, the viewer can be extended to utilize various browser graphics APIs, including WebGL and WebGPU. Multiple models can be viewed simultaneously, and the viewer allows for the creation of separate canvases, featuring lights, section planes, annotations, and other elements, to display multiple views of our models.

Package Modules Description
@xeokit/viewer @xeokit/viewer Browser-based model viewer
@xeokit/cameracontrol @xeokit/cameracontrol Interactive camera control for a viewer
@xeokit/webglrenderer @xeokit/webglrenderer WebGL rendering strategy for a viewer
@xeokit/treeview @xeokit/treeview HTML tree view widget for a Viewer
@xeokit/locale @xeokit/locale Localization service for a viewer

Model Importers and Exporters

The SDK provides functions for importing and exporting its model representations and semantics as industry-standard AECO file formats. These functions can be used in NodeJS scripts for file format conversion or in the browser to load various file formats into the viewer.

Package Modules Description
@xeokit/dtx @xeokit/dtx Import and export XKT files
@xeokit/gltf @xeokit/gltf Import glTF files
@xeokit/las @xeokit/las Import LAS pointcloud scans
@xeokit/cityjson @xeokit/cityjson Import CityJSON files
@xeokit/webifc @xeokit/webifc Import IFC files

Interoperating with BIM Software

The SDK offers functions for sharing bookmarks of viewer state with other BIM software as industry-standard BCF Viewpoints. These functions can be used to develop applications that facilitate collaboration on construction projects.

Package Modules Description
@xeokit/bcf @xeokit/bcf Load and save BCF

Utility Libraries

The SDK's internal and lower-level functionalities are mostly available as utility libraries with complete documentation.

Package Modules Description
@xeokit/core @xeokit/core Basic component types used throughout the xeokit SDK
@xeokit/core/constants Constants used throughout the xeokit SDK
@xeokit/core/utils Core utilities used throughout the xeokit SDK
@xeokit/basictypes @xeokit/basictypes/basicTypes Basic semantic data type constants
@xeokit/ifctypes IFC data type constants
@xeokit/math @xeokit/math/math General math definitions and constants
@xeokit/math/boundaries Boundaries math library
@xeokit/math/compression SceneGeometry de/compression utilities library
@xeokit/math/curves Spline curves math library
@xeokit/math/geometry SceneMesh generation functions
@xeokit/math/matrix Matrix and vector math utilities library
@xeokit/math/rtc Relative-to-center (RTC) coordinates math library
@xeokit/webgl @xeokit/webglutils WebGL utilities library
@xeokit/procgen @xeokit/procgen/geometry SceneGeometry generation functions
@xeokit/ktx2 @xeokit/ktx2 Compressed texture support

Examples

Spinning Textured Box

Let's make a simple application using xeokit - a spinning, textured box.

First import the npm modules we need from the SDK:

npm install @xeokit/scene
npm install @xeokit/viewer
npm install @xeokit/webglrenderer
npm install @xeokit/core/constants

Then create a simple HTML page with a canvas element:

<!DOCTYPE html>
<html>
  <head>
    <title>xeokit Spinning Textured Box</title>
  </head>
  <body>
    <canvas id="myCanvas"></canvas>
  </body>
</html>

Now let's write some JavaScript to create the spinning, textured box.

import {Scene} from "@xeokit/scene";
import {TrianglesPrimitive, LinearEncoding, LinearFilter} from "@xeokit/core/constants";
import {Viewer} from "@xeokit/viewer";
import {WebGLRenderer} from "@xeokit/webglrenderer";

const scene = new Scene(); // Scene graph

const renderer = new WebGLRenderer({}); // WebGL renderers kernel

const viewer = new Viewer({ // Browser-base viewer
    scene,
    renderer
});

const view = myViewer.createView({ // Independent view 
    id: "myView",
    canvasId: "myView1"
});

view.camera.eye = [0, 0, 10]; // Looking down the -Z axis
view.camera.look = [0, 0, 0];
view.camera.up = [0, 1, 0];

const sceneModel = scene.createModel(); // Start building the scene graph

sceneModel.createGeometry({ // Define a box-shaped geometry
    id: "boxGeometry",
    primitive: TrianglesPrimitive,
    positions: [-1, -1, -1, 1, -1, -1, ],
    uvs: [1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, ],
    indices: [0, 1, 2, 0, 2, 3, 4, 5, 6, 4, ]
});

sceneModel.createTexture({ // 
    id: "boxColorTexture",
    src: "myTexture.png",
    encoding: LinearEncoding,
    magFilter: LinearFilter,
    minFilter: LinearFilter
});

sceneModel.createTextureSet({
    id: "boxTextureSet",
    colorTextureId: "boxColorTexture"
});

sceneModel.createLayerMesh({
    id: "boxMesh",
    geometryId: "boxGeometry",
    color: [1, 1, 1],
    metallic: 0.8, // PBR material attributes
    roughness: 0.3,
    textureSetId: "boxTextureSet"
});

sceneModel.createObject({
    id: "boxObject",
    meshIds: ["boxMesh"]
});

sceneModel.build().then(() => { // Compresses textures, geometries etc.

    // A textured box object now appears on our View's canvas.

    // We can now show/hide/select/highlight our box through the View:

    view.objects["boxObject"].visible = true;
    view.objects["boxObject"].highlighted = false;  // etc.

    // Start orbiting the camera:

    viewer.onTick.subscribe(() => {
        view.camera.orbitYaw(1.0);
    });
});

glTF Model Viewer

Let's make a simple application that views a glTF file in the browser.

First import the npm modules we need from the SDK:

npm install @xeokit/scene
npm install @xeokit/viewer
npm install @xeokit/webglrenderer
npm install @xeokit/core/constants
npm install @xeokit/gltf

Here's the JavaScript for our glTF viewer app:

import {Scene} from "@xeokit/scene";
import {TrianglesPrimitive, LinearEncoding, LinearFilter} from "@xeokit/core/constants";
import {Viewer} from "@xeokit/viewer";
import {WebGLRenderer} from "@xeokit/webglrenderer";
import {loadGLTF} from "@xeokit/gltf";

const scene = new Scene(); // Scene graph

const renderer = new WebGLRenderer({}); // WebGL renderers kernel

const viewer = new Viewer({ // Browser-base viewer
    scene,
    renderer
});

const view = myViewer.createView({ // Independent view 
    id: "myView",
    canvasId: "myView1"
});

view.camera.eye = [0, 0, 10]; // Looking down the -Z axis
view.camera.look = [0, 0, 0];
view.camera.up = [0, 1, 0];

const sceneModel = scene.createModel(); // Start building the scene graph

fetch("myModel.glb").then(response => {

    response.arrayBuffer().then(data => {

        loadGLTF({data, scene}).then(() => {

            sceneModel.build().then(() => { // Compresses textures, geometries etc.

                // A model now appears on our View's canvas.

                // We can now show/hide/select/highlight the model's objects through the View:

                view.objects["2hExBg8jj4NRG6zzE$aSi6"].visible = true;
                view.objects["2hExBg8jj4NRG6zzE$aSi6"].highlighted = false;  // etc.

                // Start orbiting the camera:

                viewer.onTick.subscribe(() => {
                    view.camera.orbitYaw(1.0);
                });
            });
        });
    });
});

Convert a glTF file to XKT

Let's make a simple NodeJS script that converts a glTF file into xeokit's native XKT format.

First import the npm modules we need from the SDK. Note that we don't need the viewer for this example.

npm install @xeokit/scene
npm install @xeokit/core/constants
npm install @xeokit/gltf
npm install @xeokit/dtx

Here's the JavaScript for our converter script.

import {Scene} from "@xeokit/scene";
import {Data} from "@xeokit/data";
import {TrianglesPrimitive, LinearEncoding, LinearFilter} from "@xeokit/core/constants";
import {loadGLTF} from "@xeokit/gltf";
import {saveXKT} from "packages/dtx";

const fs = require('fs');

const scene = new Scene(); // Scene graph
const sceneModel = scene.createModel({ id: "myModel" }); // Start building the scene graph

const data = new Data();
const dataModel = data.createModel({ id: "myModel" }); // Will model the glTF scene hierarchy

fs.readFile("./tests/assets/HousePlan.glb", (err, buffer) => {
    const arraybuffer = toArrayBuffer(buffer);
    loadGLTF({
        data: arrayBuffer,
        sceneModel,
        dataModel
    }).then(() => {
        sceneModel.build().then(() => { // Compresses textures, geometries etc.
            const arrayBuffer = saveXKT({ sceneModel, dataModel });
            fs.writeFile('myModel.dtx', arrayBuffer, err => {});
        });
    })
});

function toArrayBuffer(buf) {
    const ab = new ArrayBuffer(buf.length);
    const view = new Uint8Array(ab);
    for (let i = 0; i < buf.length; ++i) {
        view[i] = buf[i];
    }
    return ab;
}

Project development

Preparing:

To start developing this project, you should first install it, preferably globally:

npm i pnpm -g
pnpm install turbo --global

Then clone the repository:

git clone https://github.com/xeokit/sdk

Install the project using:

pnpm i

Building:

To build all packages and their dependencies use:

pnpm dist

This will automatically start all project building processes, a dist directory will be created in each package, this is a representation of the package's built source and its dependencies.

Testing:

To run all tests:

pnpm test

To run tests for specific package:

turbo run test --filter=nameOfSelectedPackage  

License

Copyright 2020, AGPL3 License.

Credits

See Credits.

About

Next-generation alpha-status xeokit viewer in development

https://xeokit.github.io/sdk/docs/api/index.html

License:GNU Affero General Public License v3.0


Languages

Language:TypeScript 55.3%Language:JavaScript 41.0%Language:HTML 3.5%Language:CSS 0.1%Language:Shell 0.1%