ws-choi / Conditioned-Source-Separation-LaSAFT

A PyTorch implementation of the paper: "LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation" (ICASSP 2021)

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation

Updates

MDX Challenge (Leaderboard A)

model conditioned? vocals drums bass other Song
Demucs++ X 7.968 8.037 8.115 5.193 7.328
KUILAB-MDX-Net X 8.901 7.173 7.232 5.636 7.236
Kazane Team X 7.686 7.018 6.993 4.901 6.649
LASAFT-Net-v2.0 O 7.354 5.996 5.894 4.595 5.960
LaSAFT-Net-v1.2 O 7.275 5.935 5.823 4.557 5.897
Demucs48-HQ X 6.496 6.509 6.470 4.018 5.873
LaSAFT-Net-v1.1 O 6.685 5.272 5.498 4.121 5.394
XUMXPredictor X 6.341 5.807 5.615 3.722 5.372
UMXPredictor X 5.999 5.504 5.357 3.309 5.042

PWC

Check separated samples on this demo page!

An official Pytorch Implementation of the paper "LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation" (accepted to ICASSP 2021. (slide))

Demonstration: A Pretrained Model

demo

Interactive Demonstration - Colab Link

  • including how to download and use the pretrained model

Quickstart: How to use Pretrained Models

1. Install LaSAFT.

2. Load a Pretrained Model.

from lasaft.pretrained import PreTrainedLaSAFTNet
model = PreTrainedLaSAFTNet(model_name='lasaft_large_2020')

3. call model.separate_track !

# audio should be an np(numpy) array of an stereo audio track
# with dtype of float32
# shape must be (T, 2)
# python inference_example.py  assets\footprint.mp3

vocals = model.separate_track(audio, 'vocals', overlap_ratio=0.5)
drums = model.separate_track(audio, 'drums', overlap_ratio=0.5)
bass = model.separate_track(audio, 'bass', overlap_ratio=0.5)
other = model.separate_track(audio, 'other', overlap_ratio=0.5)

4. Example code

python inference_example.py  assets\footprint.mp3

Step-by-Step Tutorials

1. Installation

We highly recommend you to install environments using scripts below, even if we uploaded the pip-requirements.txt

conda env create -f lasaft_env_gpu.yaml -n lasaft
conda activate lasaft
pip install -r requirements.txt

2. Dataset: Musdb18

LaSAFT was trained/evaluated on the Musdb18 dataset.

We provide wrapper packages to efficiently load musdb18 tracks as pytorch tensors.

You can also find useful scripts for downloading and preprocessing Musdb18 (or its 7s-samples).

4. Logging (mandatory): wandb

This project uses wandb. Currently, this setting is mandatory.

To use this, you should copy your wandb apy key from wandb

wandb login -> settings -> Danger Zone -> API keys

Then please copy it and paste it to .env (there is a template file ./.env.sample as below.).

wandb_api_key= [YOUR WANDB API KEY] # go wandb.ai/settings and copy your key
data_dir= [Your MUSDBHQ Data PATH] # Your Musdb data directory. must be an absolute path.

5. Training

  • Below is an example to train a U-Net with LaSAFT+GPoCM, whose hyper-parameters are set as default.

    python train.py trainer.gpus=1 dataset.batch_size=6
  • train.py includes training scripts for several models described in the paper [1].

    • It provides several options, including pytorch-lightning parameters
    • model/conditioned_separation: CUNET_TFC_FiLM, CUNET_TFC_FiLM_LaSAFT, CUNET_TFC_FiLM_TDF, CUNET_TFC_GPoCM, CUNET_TFC_GPoCM_LaSAFT, CUNET_TFC_GPoCM_LightSAFT, CUNET_TFC_GPoCM_TDF, default, lasaft_net, lightsaft_net
  • An example of Training/Validation loss (see wandb report for more details)

Examples

  • Table 1 in [1]

    • FiLM CUNet

      python train.py model=conditioned_separation/CUNET_TFC_FiLM dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
    • FiLM CUNet + TDF

      python train.py model=conditioned_separation/CUNET_TFC_FiLM_TDF dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
    • FiLM CUNet + LaSAFT

      python train.py model=conditioned_separation/CUNET_TFC_FiLM_LaSAFT dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
    • GPoCM CUNet

      python train.py model=conditioned_separation/CUNET_TFC_GPoCM dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
    • GPoCM CUNet + TDF

      python train.py model=conditioned_separation/CUNET_TFC_GPoCM_TDF dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
    • GPoCM CUNet + LaSAFT (* proposed model)

      python train.py model=conditioned_separation/CUNET_TFC_GPoCM_LaSAFT dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
    • GPoCM CUNet + LightSAFT

      python train.py model=conditioned_separation/CUNET_TFC_GPoCM_LightSAFT dataset.batch_size=8 trainer.precision=16 trainer.gpus=1 training.patience=10 training.lr=0.001 logger=wandb
  • Table 2 in [1] (Multi-GPUs Version)

    • GPoCM CUNet + LaSAFT (* proposed model)
      python train.py model=conditioned_separation/CUNET_TFC_GPoCM_LaSAFT trainer=four_2080tis model.n_blocks=9 model.num_tdfs=6 model.embedding_dim=64 dataset.n_fft=4096 dataset.hop_length=1024 trainer.deterministic=True training.patience=10 training.lr=0.001 training.auto_lr_schedule=True logger=wandb training.run_id=lasaft-2020

tunable hyperparameters

train is powered by Hydra.

== Configuration groups ==
Compose your configuration from those groups (group=option)

dataset: default
eval: default
model/conditioned_separation: CUNET_TFC_FiLM, CUNET_TFC_FiLM_LaSAFT, CUNET_TFC_FiLM_TDF, CUNET_TFC_GPoCM, CUNET_TFC_GPoCM_LaSAFT, CUNET_TFC_GPoCM_LightSAFT, CUNET_TFC_GPoCM_TDF, base, film, gpocm, lasaft_net, lightsaft_net, tfc
trainer: default
training: default
training/train_loss: distortion, dsr, ldsr, ncs, ncs_44100, ndsr, ndsr_44100, nlcs, raw_and_spec, raw_l1, raw_l2, raw_mse, sdr, sdr_like, spec_l1, spec_l2, spec_mse
training/val_loss: distortion, dsr, ldsr, ncs, ncs_44100, ndsr, ndsr_44100, nlcs, raw_and_spec, raw_l1, raw_l2, raw_mse, sdr, sdr_like, spec_l1, spec_l2, spec_mse


== Config ==
Override anything in the config (foo.bar=value)

trainer:
  _target_: pytorch_lightning.Trainer
  checkpoint_callback: true
  callbacks: null
  default_root_dir: null
  gradient_clip_val: 0.0
  process_position: 0
  num_nodes: 1
  num_processes: 1
  gpus: null
  auto_select_gpus: false
  tpu_cores: null
  log_gpu_memory: null
  progress_bar_refresh_rate: 1
  overfit_batches: 0.0
  track_grad_norm: -1
  check_val_every_n_epoch: 1
  fast_dev_run: false
  accumulate_grad_batches: 1
  max_epochs: 1
  min_epochs: 1
  max_steps: null
  min_steps: null
  limit_train_batches: 1.0
  limit_val_batches: 1.0
  limit_test_batches: 1.0
  val_check_interval: 1.0
  flush_logs_every_n_steps: 100
  log_every_n_steps: 50
  accelerator: ddp
  sync_batchnorm: false
  precision: 16
  weights_summary: top
  weights_save_path: null
  num_sanity_val_steps: 2
  truncated_bptt_steps: null
  resume_from_checkpoint: null
  profiler: null
  benchmark: false
  deterministic: false
  reload_dataloaders_every_epoch: false
  auto_lr_find: false
  replace_sampler_ddp: true
  terminate_on_nan: false
  auto_scale_batch_size: false
  prepare_data_per_node: true
  amp_backend: native
  amp_level: O2
  move_metrics_to_cpu: false
dataset:
  _target_: lasaft.data.data_provider.DataProvider
  musdb_root: etc/musdb18_dev_wav
  batch_size: 8
  num_workers: 0
  pin_memory: true
  num_frame: 128
  hop_length: 1024
  n_fft: 2048
model:
  spec_type: complex
  spec_est_mode: mapping
  n_blocks: 7
  input_channels: 4
  internal_channels: 24
  first_conv_activation: relu
  last_activation: identity
  t_down_layers: null
  f_down_layers: null
  control_vector_type: embedding
  control_input_dim: 4
  embedding_dim: 32
  condition_to: decoder
  unfreeze_stft_from: -1
  control_n_layer: 4
  control_type: dense
  pocm_type: matmul
  pocm_norm: batch_norm
  _target_: lasaft.source_separation.conditioned.cunet.models.dcun_tfc_gpocm_lasaft.DCUN_TFC_GPoCM_LaSAFT_Framework
  n_internal_layers: 5
  kernel_size_t: 3
  kernel_size_f: 3
  bn_factor: 16
  min_bn_units: 16
  tfc_tdf_bias: false
  tfc_tdf_activation: relu
  num_tdfs: 6
  dk: 32
training:
  train_loss:
    _target_: lasaft.source_separation.conditioned.loss_functions.Conditional_Spectrogram_Loss
    mode: mse
  val_loss:
    _target_: lasaft.source_separation.conditioned.loss_functions.Conditional_RAW_Loss
    mode: l1
  ckpt_root_path: etc/checkpoints
  log: true
  run_id: ${now:%Y-%m-%d}/${now:%H-%M-%S}
  save_weights_only: false
  optimizer: adam
  lr: 0.001
  auto_lr_schedule: true
  save_top_k: 5
  patience: 10
  seed: 2020

5. Evaluation

python eval.py pretrained=lasaft_large_2021 overlap_ratio=0.5

see result here

You can cite this paper as follows:

@INPROCEEDINGS{9413896,
  author={Choi, Woosung and Kim, Minseok and Chung, Jaehwa and Jung, Soonyoung},
  booktitle={ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Lasaft: Latent Source Attentive Frequency Transformation For Conditioned Source Separation}, 
  year={2021},
  volume={},
  number={},
  pages={171-175},
  doi={10.1109/ICASSP39728.2021.9413896}}

LaSAFT: Latent Source Attentive Frequency Transformation

GPoCM: Gated Point-wise Convolutional Modulation

Reference

[1] Woosung Choi, Minseok Kim, Jaehwa Chung, and Soonyoung Jung, “LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation.,” arXiv preprint arXiv:2010.11631 (2020).

Other Links

About

A PyTorch implementation of the paper: "LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation" (ICASSP 2021)

License:MIT License


Languages

Language:Jupyter Notebook 99.9%Language:Python 0.1%