w-beom / leetCode30Day

leetcode 30일 챌린지

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

leetCode30Day

leetcode 30일 챌린지

https://leetcode.com/ 에서 코로나로 인해 나가지 못하는 방구석 개발자들을 위해 30일 코딩 챌린지를 오픈했습니다.

앞으로 30일동안 꾸준히 문제를 풀어서 올려보려 합니다.

피드백 부탁드립니다.

1Day

Given a non-empty array of integers, every element appears twice except for one. Find that single one.

Note:

Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

Example 1:

Input: [2,2,1]
Output: 1
Example 2:

Input: [4,1,2,1,2]
Output: 4

2Day

Write an algorithm to determine if a number is "happy".

A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.

Example:
Input: 19
Output: true
Explanation: 
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1

3Day

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

4Day

Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements.

Example:
Input: [0,1,0,3,12]
Output: [1,3,12,0,0]

Note: You must do this in-place without making a copy of the array. Minimize the total number of operations.

5Day

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times).

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
             Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
             Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
             engaging multiple transactions at the same time. You must sell before buying again.
Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

6Day

Given an array of strings, group anagrams together.

Example:

Input: ["eat", "tea", "tan", "ate", "nat", "bat"],
Output:
[
  ["ate","eat","tea"],
  ["nat","tan"],
  ["bat"]
]

Note:

  • All inputs will be in lowercase.
  • The order of your output does not matter.

7Day

Given an integer array arr, count element x such that x + 1 is also in arr.

If there're duplicates in arr, count them seperately.

Example 1:

Input: arr = [1,2,3]
Output: 2
Explanation: 1 and 2 are counted cause 2 and 3 are in arr.
Example 2:

Input: arr = [1,1,3,3,5,5,7,7]
Output: 0
Explanation: No numbers are counted, cause there's no 2, 4, 6, or 8 in arr.
Example 3:

Input: arr = [1,3,2,3,5,0]
Output: 3
Explanation: 0, 1 and 2 are counted cause 1, 2 and 3 are in arr.
Example 4:

Input: arr = [1,1,2,2]
Output: 2
Explanation: Two 1s are counted cause 2 is in arr.

Constraints:

  • 1 <= arr.length <= 1000
  • 0 <= arr[i] <= 1000

8Day

Given a non-empty, singly linked list with head node head, return a middle node of linked list.

If there are two middle nodes, return the second middle node.

Example 1:

Input: [1,2,3,4,5]
Output: Node 3 from this list (Serialization: [3,4,5])
The returned node has value 3.  (The judge's serialization of this node is [3,4,5]).
Note that we returned a ListNode object ans, such that:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, and ans.next.next.next = NULL.
Example 2:

Input: [1,2,3,4,5,6]
Output: Node 4 from this list (Serialization: [4,5,6])
Since the list has two middle nodes with values 3 and 4, we return the second one.

Note:

  • The number of nodes in the given list will be between 1 and 100.

9Day

Given a non-empty, singly linked list with head node head, return a middle node of linked list.

If there are two middle nodes, return the second middle node.

Example 1:

Input: [1,2,3,4,5]
Output: Node 3 from this list (Serialization: [3,4,5])
The returned node has value 3.  (The judge's serialization of this node is [3,4,5]).
Note that we returned a ListNode object ans, such that:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, and ans.next.next.next = NULL.
Example 2:

Input: [1,2,3,4,5,6]
Output: Node 4 from this list (Serialization: [4,5,6])
Since the list has two middle nodes with values 3 and 4, we return the second one.

Note:

  • The number of nodes in the given list will be between 1 and 100.

10Day

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

push(x) -- Push element x onto stack. pop() -- Removes the element on top of the stack. top() -- Get the top element. getMin() -- Retrieve the minimum element in the stack.

Example:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> Returns -3.
minStack.pop();
minStack.top();      --> Returns 0.
minStack.getMin();   --> Returns -2.

11Day

Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

Example:
Given a binary tree
          1
         / \
        2   3
       / \     
      4   5    
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].

Note: The length of path between two nodes is represented by the number of edges between them.

12Day

We have a collection of stones, each stone has a positive integer weight.

Each turn, we choose the two heaviest stones and smash them together. Suppose the stones have weights x and y with x <= y. The result of this smash is:

If x == y, both stones are totally destroyed; If x != y, the stone of weight x is totally destroyed, and the stone of weight y has new weight y-x. At the end, there is at most 1 stone left. Return the weight of this stone (or 0 if there are no stones left.)

Example 1:

Input: [2,7,4,1,8,1]
Output: 1
Explanation: 
We combine 7 and 8 to get 1 so the array converts to [2,4,1,1,1] then,
we combine 2 and 4 to get 2 so the array converts to [2,1,1,1] then,
we combine 2 and 1 to get 1 so the array converts to [1,1,1] then,
we combine 1 and 1 to get 0 so the array converts to [1] then that's the value of last stone.

Note:

  1. 1 <= stones.length <= 30
  2. 1 <= stones[i] <= 1000

13Day

Given a binary array, find the maximum length of a contiguous subarray with equal number of 0 and 1.

Example 1:
Input: [0,1]
Output: 2
Explanation: [0, 1] is the longest contiguous subarray with equal number of 0 and 1.
Example 2:
Input: [0,1,0]
Output: 2
Explanation: [0, 1] (or [1, 0]) is a longest contiguous subarray with equal number of 0 and 1.

14Day

You are given a string s containing lowercase English letters, and a matrix shift, where shift[i] = [direction, amount]:

  • direction can be 0 (for left shift) or 1 (for right shift).
  • amount is the amount by which string s is to be shifted.
  • A left shift by 1 means remove the first character of s and append it to the end.
  • Similarly, a right shift by 1 means remove the last character of s and add it to the beginning. Return the final string after all operations.
Example 1:

Input: s = "abc", shift = [[0,1],[1,2]]
Output: "cab"
Explanation: 
[0,1] means shift to left by 1. "abc" -> "bca"
[1,2] means shift to right by 2. "bca" -> "cab"
Example 2:

Input: s = "abcdefg", shift = [[1,1],[1,1],[0,2],[1,3]]
Output: "efgabcd"
Explanation:  
[1,1] means shift to right by 1. "abcdefg" -> "gabcdef"
[1,1] means shift to right by 1. "gabcdef" -> "fgabcde"
[0,2] means shift to left by 2. "fgabcde" -> "abcdefg"
[1,3] means shift to right by 3. "abcdefg" -> "efgabcd"

Constraints:

  • 1 <= s.length <= 100
  • s only contains lower case English letters.
  • 1 <= shift.length <= 100
  • shift[i].length == 2
  • 0 <= shift[i][0] <= 1
  • 0 <= shift[i][1] <= 100 Note: The length of the given binary array will not exceed 50,000.

15Day

Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Example:

Input:  [1,2,3,4]
Output: [24,12,8,6]

Constraint: It's guaranteed that the product of the elements of any prefix or suffix of the array (including the whole array) fits in a 32 bit integer.

Note: Please solve it without division and in O(n).

Follow up: Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)

16Day

Given a string containing only three types of characters: '(', ')' and '*', write a function to check whether this string is valid. We define the validity of a string by these rules:

  1. Any left parenthesis '(' must have a corresponding right parenthesis ')'.
  2. Any right parenthesis ')' must have a corresponding left parenthesis '('.
  3. Left parenthesis '(' must go before the corresponding right parenthesis ')'.
  4. '*' could be treated as a single right parenthesis ')' or a single left parenthesis '(' or an empty string.
  5. An empty string is also valid.
Example 1:
Input: "()"
Output: True
Example 2:
Input: "(*)"
Output: True
Example 3:
Input: "(*))"
Output: True

Note: The string size will be in the range [1, 100].

17Day

Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example 1:

Input:
11110
11010
11000
00000

Output: 1
Example 2:

Input:
11000
11000
00100
00011

Output: 3

18Day

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

19Day

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Your algorithm's runtime complexity must be in the order of O(log n).

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1

20Day

Return the root node of a binary search tree that matches the given preorder traversal.

(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)

Example 1:

Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]

image

Note:

  1. 1 <= preorder.length <= 100
  2. The values of preorder are distinct.

21Day

(This problem is an interactive problem.)

A binary matrix means that all elements are 0 or 1. For each individual row of the matrix, this row is sorted in non-decreasing order.

Given a row-sorted binary matrix binaryMatrix, return leftmost column index(0-indexed) with at least a 1 in it. If such index doesn't exist, return -1.

You can't access the Binary Matrix directly. You may only access the matrix using a BinaryMatrix interface:

  • BinaryMatrix.get(x, y) returns the element of the matrix at index (x, y) (0-indexed).
  • BinaryMatrix.dimensions() returns a list of 2 elements [m, n], which means the matrix is m * n. Submissions making more than 1000 calls to BinaryMatrix.get will be judged Wrong Answer. Also, any solutions that attempt to circumvent the judge will result in disqualification.

For custom testing purposes you're given the binary matrix mat as input in the following four examples. You will not have access the binary matrix directly.

Example 1:

image

Input: mat = [[0,0],[1,1]]
Output: 0

Example 2:

image

Input: mat = [[0,0],[0,1]]
Output: 1

Example 3:

image

Input: mat = [[0,0],[0,0]]
Output: -1

Example 4:

image

Input: mat = [[0,0,0,1],[0,0,1,1],[0,1,1,1]]
Output: 1

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 100
  • mat[i][j] is either 0 or 1.
  • mat[i] is sorted in a non-decreasing way.

22Day

Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.

Example 1:
Input:nums = [1,1,1], k = 2
Output: 2

Note:

  1. The length of the array is in range [1, 20,000].
  2. The range of numbers in the array is [-1000, 1000] and the range of the integer k is [-1e7, 1e7].

23Day

Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive.

Example 1:

Input: [5,7]
Output: 4
Example 2:

Input: [0,1]
Output: 0

24Day

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

The cache is initialized with a positive capacity.

Follow up: Could you do both operations in O(1) time complexity?

Example:

LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // returns 1
cache.put(3, 3);    // evicts key 2
cache.get(2);       // returns -1 (not found)
cache.put(4, 4);    // evicts key 1
cache.get(1);       // returns -1 (not found)
cache.get(3);       // returns 3
cache.get(4);       // returns 4

25Day

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

Example 1:

Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:

Input: [3,2,1,0,4]
Output: false

Explanation: You will always arrive at index 3 no matter what. Its maximum
             jump length is 0, which makes it impossible to reach the last index.
             

26Day

Given two strings text1 and text2, return the length of their longest common subsequence.

A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.

If there is no common subsequence, return 0.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000
  • The input strings consist of lowercase English characters only.

27Day

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.

Example:

Input: 

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Output: 4

28Day

You have a queue of integers, you need to retrieve the first unique integer in the queue.

Implement the FirstUnique class:

  • FirstUnique(int[] nums) Initializes the object with the numbers in the queue.
  • int showFirstUnique() returns the value of the first unique integer of the queue, and returns -1 if there is no such integer.
  • void add(int value) insert value to the queue.
Example 1:

Input: 
["FirstUnique","showFirstUnique","add","showFirstUnique","add","showFirstUnique","add","showFirstUnique"]
[[[2,3,5]],[],[5],[],[2],[],[3],[]]
Output: 
[null,2,null,2,null,3,null,-1]

Explanation: 
FirstUnique firstUnique = new FirstUnique([2,3,5]);
firstUnique.showFirstUnique(); // return 2
firstUnique.add(5);            // the queue is now [2,3,5,5]
firstUnique.showFirstUnique(); // return 2
firstUnique.add(2);            // the queue is now [2,3,5,5,2]
firstUnique.showFirstUnique(); // return 3
firstUnique.add(3);            // the queue is now [2,3,5,5,2,3]
firstUnique.showFirstUnique(); // return -1
Example 2:

Input: 
["FirstUnique","showFirstUnique","add","add","add","add","add","showFirstUnique"]
[[[7,7,7,7,7,7]],[],[7],[3],[3],[7],[17],[]]
Output: 
[null,-1,null,null,null,null,null,17]

Explanation: 
FirstUnique firstUnique = new FirstUnique([7,7,7,7,7,7]);
firstUnique.showFirstUnique(); // return -1
firstUnique.add(7);            // the queue is now [7,7,7,7,7,7,7]
firstUnique.add(3);            // the queue is now [7,7,7,7,7,7,7,3]
firstUnique.add(3);            // the queue is now [7,7,7,7,7,7,7,3,3]
firstUnique.add(7);            // the queue is now [7,7,7,7,7,7,7,3,3,7]
firstUnique.add(17);           // the queue is now [7,7,7,7,7,7,7,3,3,7,17]
firstUnique.showFirstUnique(); // return 17
Example 3:

Input: 
["FirstUnique","showFirstUnique","add","showFirstUnique"]
[[[809]],[],[809],[]]
Output: 
[null,809,null,-1]

Explanation: 
FirstUnique firstUnique = new FirstUnique([809]);
firstUnique.showFirstUnique(); // return 809
firstUnique.add(809);          // the queue is now [809,809]
firstUnique.showFirstUnique(); // return -1

Constraints:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 10^8
  • 1 <= value <= 10^8
  • At most 50000 calls will be made to showFirstUnique and add.

29Day

Given a binary tree where each path going from the root to any leaf form a valid sequence, check if a given string is a valid sequence in such binary tree.

We get the given string from the concatenation of an array of integers arr and the concatenation of all values of the nodes along a path results in a sequence in the given binary tree.

Example 1: image

Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,1,0,1]
Output: true
Explanation: 
The path 0 -> 1 -> 0 -> 1 is a valid sequence (green color in the figure). 
Other valid sequences are: 
0 -> 1 -> 1 -> 0 
0 -> 0 -> 0

Example 2:

image

Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,0,1]
Output: false 
Explanation: The path 0 -> 0 -> 1 does not exist, therefore it is not even a sequence.

Example 3: image

Input: root = [0,1,0,0,1,0,null,null,1,0,0], arr = [0,1,1]
Output: false
Explanation: The path 0 -> 1 -> 1 is a sequence, but it is not a valid sequence.

Constraints:

  • 1 <= arr.length <= 5000
  • 0 <= arr[i] <= 9
  • Each node's value is between [0 - 9].

About

leetcode 30일 챌린지


Languages

Language:Java 100.0%