vdsprakash / tf-perceptual-eusr

A TensorFlow-based image super-resolution model considering both quantitative and perceptual quality

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

4PP-EUSR

Four-pass perceptual super-resolution with enhanced upscaling

Introduction

This repository contains a TensorFlow-based implementation of 4PP-EUSR ("Deep learning-based image super-resolution considering quantitative and perceptual quality"), which considers both the quantitative (e.g., PSNR) and perceptual quality (e.g., NIQE) of the upscaled images. Our method won the 2nd place and got the highest human opinion score for Region 2 in the 2018 PIRM Challenge on Perceptual Image Super-resolution at ECCV 2018.

BSD100 - 37073 ※ The perceptual index is calculated by "0.5 * ((10 - Ma) + NIQE)", which is used in the PIRM Challenge. Lower is better.

Followings are the performance comparison evaluated on the BSD100 dataset.

Method PSNR (dB) (↓) Perceptual Index
EDSR 27.796 5.326
MDSR 27.771 5.424
EUSR 27.674 5.307
SRResNet-MSE 27.601 5.217
4PP-EUSR (PIRM Challenge) 26.569 2.683
SRResNet-VGG22 26.322 5.183
SRGAN-MSE 25.981 2.802
Bicubic interpolation 25.957 6.995
SRGAN-VGG22 25.697 2.631
SRGAN-VGG54 25.176 2.351
CX 24.581 2.250

Please cite following papers when you use the code, pre-trained models, or results:

Dependencies

  • Python 3.6+
  • TensorFlow 1.8+

Test pre-trained models

Generating upscaled images from the trained models can be done by test/test.py. Following are the brief instructions.

  1. Download and copy the trained model available in Downloads section to the test/ folder.
  2. Place the low-resolution images (PNG only) to the test/LR/ folder.
  3. Run python test.py --model_name [model file name]. For example, if you downloaded the PIRM Challenge version of our pre-trained model, run python test.py --model_name 4pp_eusr_pirm.pb.
  4. The upscaled images will be available on the test/SR/ folder.

Please run python test.py --help for more information.

Training 4PP-EUSR

Implementing the training code is in progress. Please refer to README.md on the train/ folder for more information.

Downloads

Pre-trained models:

Results (Set5, Set14, BSD100, PIRM):

About

A TensorFlow-based image super-resolution model considering both quantitative and perceptual quality

License:Apache License 2.0


Languages

Language:Python 100.0%