tsgts / Embedded-Neural-Network

collection of works on neural network based embedded applications

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Papers Reading List.

  • This is a collection of papers aiming at reducing model sizes or the ASIC/FPGA accelerator for Machine Learning, especially deep neural network related applications. (Inspiled by Neural-Networks-on-Silicon)
  • Notes can be found in my personal blog. (TODO)

Network Compression

Parameter Sharing

  • structured matrices
    • Structured Convolution Matrices for Energy-efficient Deep learning. (IBM Research–Almaden)
    • Structured Transforms for Small-Footprint Deep Learning. (Google Inc)
    • An Exploration of Parameter Redundancy in Deep Networks with Circulant Projections.
  • Hashing
    • Functional Hashing for Compressing Neural Networks. (Baidu Inc)
    • Compressing Neural Networks with the Hashing Trick. (Washington University + NVIDIA)
  • Learning compact recurrent neural networks. (University of Southern California + Google)

Teacher-Student Mechanism (Distilling)

  • Distilling the Knowledge in a Neural Network. (Google Inc)
  • Sequence-Level Knowledge Distillation. (Harvard University)

Fixed-precision training and storage

  • Deep neural networks are robust to weight binarization and other non-linear distortions. (IBM Research–Almaden)
    • XNOR-Net, Ternary Weight Networks (TWNs), Binary-net and their variants.
    • Recurrent Neural Networks With Limited Numerical Precision. (ETH Zurich + Montréal@Yoshua Bengio)
    • Neural Networks with Few Multiplications. (Montréal@Yoshua Bengio)
  • 1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs. (Tsinghua University + Microsoft)
  • Towards the Limit of Network Quantization. (Samsung US R&D Center)
  • Incremental Network Quantization_Towards Lossless CNNs with Low-precision Weights. (Intel Labs China)
  • Loss-aware Binarization of Deep Networks. (Hong Kong University of Science and Technology)
  • Trained Ternary Quantization. (Tsinghua University + Stanford University + NVIDIA)

Sparsity regularizers & Pruning

  • Learning both Weights and Connections for Efficient Neural Networks. (SongHan, Stanford University)
  • Deep Compression, EIE. (SongHan, Stanford University)
  • Dynamic Network Surgery for Efficient DNNs. (Intel)
  • Compression of Neural Machine Translation Models via Pruning. (Stanford University)
  • Accelerating Deep Convolutional Networks using low-precision and sparsity. (Intel)
  • Faster CNNs with Direct Sparse Convolutions and Guided Pruning. (Intel)
  • Exploring Sparsity in Recurrent Neural Networks. (Baidu Research)
  • Pruning Convolutional Neural Networks for Resource Efficient Inference. (NVIDIA)
  • Pruning Filters for Efficient ConvNets. (University of Maryland + NEC Labs America)
  • Soft Weight-Sharing for Neural Network Compression. (University of Amsterdam)
  • Sparsely-Connected Neural Networks_Towards Efficient VLSI Implementation of Deep Neural Networks. (McGill University)
  • Training Compressed Fully-Connected Networks with a Density-Diversity Penalty. (University of Washington)

Low-rank matrix factorization & Tensor Decomposition

  • Learning compact recurrent neural networks. (University of Southern California + Google)
  • Others coming soon!

Conditional (Adaptive) Computing

  • Adaptive Computation Time for Recurrent Neural Networks. (Google DeepMind@Alex Graves)
  • Variable Computation in Recurrent Neural Networks. (New York University + Facebook AI Research)
  • Spatially Adaptive Computation Time for Residual Networks. (Google, etc.)
  • Hierarchical Multiscale Recurrent Neural Networks. (Montréal)
  • Outrageously Large Neural Networks_The Sparsely-Gated Mixture-of-Experts Layer. (Google Brain + Jagiellonian University)

Hardware Accelerator

Benchmark and Platform Analysis

  • Fathom: Reference Workloads for Modern Deep Learning Methods. (Harvard University)
  • DeepBench: Open-Source Tool for benchmarking DL operations. (svail.github.io-Baidu)

Recurrent Neural Networks

  • FPGA-based Low-power Speech Recognition with Recurrent Neural Networks. (Seoul National University)
  • Accelerating Recurrent Neural Networks in Analytics Servers: Comparison of FPGA, CPU, GPU, and ASIC. (Intel)
  • ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA. (Song Han, Stanford University, etc.)

Convolutional Neural Networks

  • Caffeinated FPGAs: FPGA Framework For Convolutional Neural Networks
  • Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC. (Intel)
  • FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. (Xilinx Research Labs, etc.)

About

collection of works on neural network based embedded applications