trestles / hundred-page-ml

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

  1. Introduction 1.1. What is Machine Learning? 1 1.2. Types of Learning 1 1.2.1. Supervised Learning 1 1.2.2. Unsupervised Learning 2 1.2.3. Semi-supervised learning 2 1.2.4. Reinforcement Learning 3 1.3. How Supervised Learning Works 3 1.4. Why the Model Works on New Data 7

  2. Notation and Definitions 9 2.1. Notation 9 2.1.1. Data Structures 9 2.1.2. Capital Sigma Notation 10 2.1.3. Capital Pi Notation 11 2.1.4. Operations on Sets 11 2.1.5. Operations on Vectors 11 2.1.6. Functions 12 2.1.7. Max and Arg Max 13 2.1.8. Assignment Operator 14 2.1.9. Derivatives and Gradient 14 2.2. Random Variable 15 2.3. Unbiased Estimators 17 2.4. Bayes' Rule 17 2.5. Parameter Estimation 17 2.6. Paremeters vs Hyperparameters 18 2.7. Classification vs Regression 19 2.8. Model-Based vs Instance-Based Learning 19 2.9. Shallow vs Deep Learning 20

  3. Fundamental Algorithms 21 3.1. Linear Regression 21 3.1.1. Problem Statement 21 3.1.2. Solution 23 3.2. Logistic Regression 25 3.2.1. Problem Statement 25 3.2.2. Solution 26 3.3. Decision Tree Learning 27 3.3.1. Problem Statement 27 3.3.2. Solution 27 3.4. Support Vector Machine 30 3.4.1. Dealing with Noise 31 3.4.2. Dealing with Inherent Non-Linearity 32 3.5. k-Nearest Neighbors 34

  4. Anatomy of a Learning Algorithm 35 4.1. Building Blocks of a Learning Algorithm 35 4.2. Gradient Descent 36 4.3. How Machine Learning Engineers Work 41 4.4. Learning Algoriths' Particularities 41

  5. Basic Practice 5.1. Feature Engineering 43 5.1.1. One-Hot Encoding 44 5.1.2. Binning 44 5.1.3. Normalization 45 5.1.4. Standardization 45 5.1.5. Dealing with Missing Features 46 5.1.6. Data Imputation Techniques 47 5.2. Learning Algorithm Selection 47 5.3. Three Sets 49 5.4. Underfitting and Overfitting 51 5.5. Regularization 52 5.6. Model Performance Assessment 54 5.6.1. Confusion Matrix 55 5.6.2. Precision / Recall 55 5.6.3. Accuracy 56 5.6.4. Cost-Sensitive Accuracy 57 5.6.5. Area under the ROC Curve (AUC) 58 5.7. Hyperparamaeter Tuning 58 5.7.1. Cross-Validation 60

  6. Neural Networks and Deep Learning 6.1. Neural Networks 61 6.1.1. Multilayer Perceptron Example 62 6.1.2. Feed-Forward Neural Network Architecture 64 6.2. Deep Learning 65 6.2.1. Convolution Neural Network 65 6.2.2. Recurrent Neural Network 72

  7. Problems and Solutions 77 7.1. Kernel Regression 77 7.2. Multiclass Classification 78 7.3. One-Class Classification 79 7.4. Multi-Label Classification 81 7.5. Ensemble Learning 83 7.5.1. Boosting and Bagging 83 7.5.2. Random Forest 84 7.5.3. Gradient Boosting 85 7.6. Learning to Label Sequences 87 7.7. Sequence-to-Sequence Learning 88 7.8. Active Learning 89 7.9. Semi-Supervised Learning 91 7.10. One-Shot Learning 93 7.11. Zero-Shot Learning 95

  8. Advanced Practice 8.1. Handling Unbalanced Datasets 97 8.2. Combining Models 99 8.3. Training Neural Networks 99 8.4. Advanced Regularization 100 8.5. Handling Multiple Inputs 101 8.6. Handling Multiple Outputs 102 8.7. Transfer Learning 102 8.8. Algorithmic Efficiency 103

  9. Unsupervised Learning 107 9.1. Density Estimation 107 9.2. Clustering 109 9.2.1. K-Means 110 9.2.2. DBSCAN and HDBSCAN 111 9.2.3. Determining the Number of Clusters 112 9.2.4. Other Clustering Algorithms 115 9.3. Dimensionality Reduction 118 9.3.1. Principal Component Analysis 119 9.3.2. UMAP 119 9.4. Outlier Detection 121

  10. Other Forms of Learning 123 10.1. Metric Learning 123 10.2. Learning to Rank 125 10.3. Learning to Recommend 127 10.3.1. Factorization Machines 128 10.3.2. Denoising Autoencoders 130 10.4. Self-Supervised Learning: Word Embeddings 131

  11. Conclusion 11.1. What Wasn't Covered 133 11.1.1. Topic Modeling 133 11.1.2. Gaussian Processes 134 11.1.3. Generalized Linear Models 134 11.1.4. Probabilistic Graphical Models 134 11.1.5. Markov Chain Monte Carlo 135 11.1.6. Genetic Algorithms 135 11.1.7. Reinforcement Learning 136 11.2. Acknowledgements 136

About