tmanager22 / qabot

Repository from Github https://github.comtmanager22/qabotRepository from Github https://github.comtmanager22/qabot

qabot

Query local or remote files with natural language queries powered by langchain and gpt-3.5-turbo and duckdb πŸ¦†.

Works on local CSV files:

remote CSV files:

$ qabot \
    -f https://www.stats.govt.nz/assets/Uploads/Environmental-economic-accounts/Environmental-economic-accounts-data-to-2020/renewable-energy-stock-account-2007-2020-csv.csv \
    -q "How many Gigawatt hours of generation was there for Solar resources in 2015 through to 2020?"

Even on (public) data stored in S3:

Quickstart

You need to set the OPENAI_API_KEY environment variable to your OpenAI API key, which you can get from here.

Install the qabot command line tool using pip/poetry:

$ pip install qabot

Then run the qabot command with either local files (-f my-file.csv) or a database connection string.

Note if you want to use a database, you will need to install the relevant drivers, e.g. pip install psycopg2-binary for postgres.

Examples

Local CSV file/s

$ qabot -q "how many passengers survived by gender?" -f data/titanic.csv
πŸ¦† Loading data from files...
Loading data/titanic.csv into table titanic...

Query: how many passengers survived by gender?
Result:
There were 233 female passengers and 109 male passengers who survived.


 πŸš€ any further questions? [y/n] (y): y

 πŸš€ Query: what was the largest family who did not survive? 
Query: what was the largest family who did not survive?
Result:
The largest family who did not survive was the Sage family, with 8 members.

 πŸš€ any further questions? [y/n] (y): n

Intermediate steps and database queries

Use the -v flag to see the intermediate steps and database queries.

Sometimes it takes a long route to get to the answer, but it's interesting to see how it gets there:

qabot -f data/titanic.csv -q "how many passengers survived by gender?" -v
πŸ¦† Loading data from files...
Query: how many passengers survived by gender?
I need to check the columns in the 'titanic' table to see which ones contain gender and survival information.
Action: Describe Table
Action Input: titanic

Observation: titanic

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”
β”‚ column_name β”‚ column_type β”‚  null   β”‚   key   β”‚ default β”‚ extra β”‚
β”‚   varchar   β”‚   varchar   β”‚ varchar β”‚ varchar β”‚ varchar β”‚ int32 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€
β”‚ PassengerId β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Survived    β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Pclass      β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Name        β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Sex         β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Age         β”‚ DOUBLE      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ SibSp       β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Parch       β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Ticket      β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Fare        β”‚ DOUBLE      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Cabin       β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Embarked    β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 12 rows                                               6 columns β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

I need to create a view that only includes the columns I need for this question.
Action: Data Op
Action Input: 
        CREATE VIEW titanic_gender_survival AS
        SELECT Sex, Survived
        FROM titanic
Thought:

> Entering new AgentExecutor chain...
This is a valid SQL query creating a view. We can execute it directly.
Action: execute
Action Input: 
        CREATE VIEW titanic_gender_survival AS
        SELECT Sex, Survived
        FROM titanic
Observation: No output
Thought:The view has been created successfully. We can now query it.
Action: execute
Action Input: SELECT * FROM titanic_gender_survival LIMIT 5
Observation: 
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Sex   β”‚ Survived β”‚
β”‚ varchar β”‚  int64   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ male    β”‚        0 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ male    β”‚        0 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Thought:The view has been created successfully and we can see the first 5 rows of the view. The final answer is the first 5 rows of the titanic_gender_survival view, showing the sex and survival status of passengers on the 
Titanic.
Final Answer: 
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Sex   β”‚ Survived β”‚
β”‚ varchar β”‚  int64   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ male    β”‚        0 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ male    β”‚        0 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

> Finished chain.

Observation: β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Sex   β”‚ Survived β”‚
β”‚ varchar β”‚  int64   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ male    β”‚        0 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ female  β”‚        1 β”‚
β”‚ male    β”‚        0 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
I need to group the data by gender and count the number of survivors for each group.
Action: Data Op
Action Input: 
        SELECT Sex, SUM(Survived) AS num_survived
        FROM titanic_gender_survival
        GROUP BY Sex
Thought:

> Entering new AgentExecutor chain...
We need to check if the table titanic_gender_survival exists and if it has the columns Sex and Survived.
Action: Describe Table
Action Input: titanic_gender_survival
Observation: titanic_gender_survival

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”
β”‚ column_name β”‚ column_type β”‚  null   β”‚   key   β”‚ default β”‚ extra β”‚
β”‚   varchar   β”‚   varchar   β”‚ varchar β”‚ varchar β”‚ varchar β”‚ int32 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Sex         β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β”‚ Survived    β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜

Thought:The table titanic_gender_survival exists and has the columns Sex and Survived. We can now run the query.
Action: execute
Action Input: 

SELECT Sex, SUM(Survived) AS num_survived FROM titanic_gender_survival GROUP BY Sex LIMIT 5


Observation: 
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Sex   β”‚ num_survived β”‚
β”‚ varchar β”‚    int128    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ male    β”‚          109 β”‚
β”‚ female  β”‚          233 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Thought:The query returned the number of survivors grouped by gender. The table titanic_gender_survival has been used. 
Final Answer: The number of survivors grouped by gender are: 
- 109 males survived
- 233 females survived.

> Finished chain.

Observation: The number of survivors grouped by gender are: 
- 109 males survived
- 233 females survived.
Intermediate Steps: 
  Step 1

    Describe Table
      titanic

      titanic

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ column_name β”‚ column_type β”‚  null   β”‚   key   β”‚ default β”‚ extra β”‚
    β”‚   varchar   β”‚   varchar   β”‚ varchar β”‚ varchar β”‚ varchar β”‚ int32 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ PassengerId β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Survived    β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Pclass      β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Name        β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Sex         β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Age         β”‚ DOUBLE      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ SibSp       β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Parch       β”‚ BIGINT      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Ticket      β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Fare        β”‚ DOUBLE      β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Cabin       β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”‚ Embarked    β”‚ VARCHAR     β”‚ YES     β”‚ NULL    β”‚ NULL    β”‚  NULL β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ 12 rows                                               6 columns β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    

  Step 2

    Data Op
      CREATE VIEW titanic_gender_survival AS
            SELECT Sex, Survived
            FROM titanic

      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚   Sex   β”‚ Survived β”‚
    β”‚ varchar β”‚  int64   β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚ male    β”‚        0 β”‚
    β”‚ female  β”‚        1 β”‚
    β”‚ female  β”‚        1 β”‚
    β”‚ female  β”‚        1 β”‚
    β”‚ male    β”‚        0 β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    

  Step 3

    Data Op
      SELECT Sex, SUM(Survived) AS num_survived
            FROM titanic_gender_survival
            GROUP BY Sex

      The number of survivors grouped by gender are: 
    - 109 males survived
    - 233 females survived.

    


Thought:


Result:
109 males and 233 females survived.

Data accessed via http/s3

Use the -f <url> flag to load data from a url, e.g. a csv file on s3:

$ qabot -f s3://covid19-lake/enigma-jhu-timeseries/csv/jhu_csse_covid_19_timeseries_merged.csv -q "how many confirmed cases are there" -v
πŸ¦† Loading data from files...
create table jhu_csse_covid_19_timeseries_merged as select * from 's3://covid19-lake/enigma-jhu-timeseries/csv/jhu_csse_covid_19_timeseries_merged.csv';

Result:
264308334 confirmed cases

Links

About


Languages

Language:Python 100.0%