thunlp / EntityDuetNeuralRanking

Entity-Duet Neural Ranking Model

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Entity-Duet Neural Ranking Model

There are source codes for Entity-Duet Neural Ranking Model (EDRM) Paper.

model

Baselines

There are codes for our main baselines: K-NRM and Conv-KNRM.

EDRM

There are codes for our work based on Conv-KNRM.

Results

The ranking results. All results are in trec format.

Method Testing-SAME (NDCG@1) Testing-SAME (NDCG@10) Testing-DIFF (NDCG@1) Testing-DIFF (NDCG@10) Testing-RAW (MRR)
K-NRM 0.2645 0.4197 0.3000 0.4228 0.3447
Conv-KNRM 0.3357 0.4810 0.3384 0.4318 0.3582
EDRM-KNRM 0.3096 0.4547 0.3327 0.4341 0.3616
EDRM-CKNRM 0.3397 0.4821 0.3708 0.4513 0.3892

Results on ClueWeb09 and CluWeb12. All models are trained on Anchor-Doc pairs in ClueWeb. These results only leverage entity embedding and entity description. For EDRM of English version, please refer to our OpenMatch tookit.

ClueWeb09:

Method NDCG@20 ERR@20
Conv-KNRM 0.2893 0.1521
EDRM 0.2922 0.1642

ClueWeb12:

Method NDCG@20 ERR@20
Conv-KNRM 0.1142 0.0930
EDRM 0.1183 0.0968

Citation

@inproceedings{liu2018EntityDuetNR,
  title={Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval},
  author={Zhenghao Liu and Chenyan Xiong and Maosong Sun and Zhiyuan Liu},
  booktitle={Proceedings of ACL},
  year={2018}
}

Contact

If you have questions, suggestions and bug reports, please email

liuzhenghao0819@gmail.com.

About

Entity-Duet Neural Ranking Model

License:MIT License


Languages

Language:Python 76.6%Language:Perl 22.0%Language:Shell 1.4%