therhaag / whisper-pandas

WhisperDB Python Pandas Reader

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

WhisperDB Python Pandas Reader

Getting started

Install:

pip install whisper-pandas

Use as Python package:

# Simple to read any Whisper file
>>> from whisper_pandas import WhisperFile
>>> wsp = WhisperFile.read("example.wsp")

# Simple to work with metadata as objects
>>> wsp.meta.archives
[WhisperArchiveMeta(index=0, offset=52, seconds_per_point=10, points=1555200, retention=15552000),
 WhisperArchiveMeta(index=1, offset=18662452, seconds_per_point=60, points=5256000, retention=315360000),
 WhisperArchiveMeta(index=2, offset=81734452, seconds_per_point=3600, points=87601, retention=315363600)]

# Simple to work with data as `pandas.Series`
>>> wsp.data[1]
2017-02-10 07:07:00+00:00    0.000000
2017-02-10 07:08:00+00:00    0.000000
2017-02-10 07:09:00+00:00    0.000000
2017-02-10 07:10:00+00:00    0.000000
2017-02-10 07:11:00+00:00    0.000000
                               ...   
2021-07-20 13:35:00+00:00    4.099915
2021-07-20 13:36:00+00:00    4.104024
2021-07-20 13:37:00+00:00    4.099772
2021-07-20 13:38:00+00:00    4.101358
2021-07-20 13:39:00+00:00    4.099854
Length: 2331015, dtype: float32

Use as command line tool:

whisper-pandas example.wsp

Description

WhisperDB is a fixed-size time series format (see docs).

The official Python package is here: whisper

You should use it, except if you like Pandas and only need to read (not write) Whisper files, then you should use whisper-pandas.

Why?

  • Mucho simpler to use
  • Mucho less likely you will shoot yourself in the foot
  • Mucho speedy

Currently we use whisper.info internally to read the metadata, and then Numpy & Pandas to read the data, using objects for the metadata and some conveniences like quickly showing what data is available in a given file or reading zipped files.

Partial reading is not implemented, a given file is always read completely and the data directly converted to columnar pandas.Series format with a datetime index.

Development

Contributions are welcome via Github pull requests.

You can run the tests via pytest.

The packaging follows the recommendation in Packaging Python Projects. To make a release increase the version number in setup.cfg and run the commands there.

About

WhisperDB Python Pandas Reader

License:MIT License


Languages

Language:Python 100.0%