sonosole / AcousticFeatures.jl

MFCC/Fbank/LPC/LPCC

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

AcousticFeatures

This library provides common Acoustic features for machine learning or sequence analysis tasks.

Installation

In REPL's package mode:

pkg> add AcousticFeatures

or alternatively from the latest repository:

pkg> add https://github.com/sonosole/AcousticFeatures.jl.git

Usage

Supported features:

  • Mel Frequency Cepstral Coefficients
  • Offline Filterbank Energies
  • Online Filterbank Energies
  • Log Filterbank Energies
  • LPC & LPCC

Offline Filterbank Energies & Log Filterbank Energies

using Plots
using WAV:wavread

plts = []
data, Fs = wavread("MonoFile.wav");
data .= data .- sum(data)/length(data)

fbank = MelSpec(
      fs = floor(Int,Fs),
   alpha = 0.97,
  winlen = 512,
  stride = 128,
  nbanks = 128,
     eps = 1e-5,
 winfunc = hanning)

# for Filterbank Energies
feat1 = fbank(copy(data), nothing)

# for Log Filterbank Energies (default)
feat2 = fbank(copy(data), log)

# for other Filterbank Energies
feat3 = fbank(copy(data), x->x^0.5)

push!(plts, plot(data, xlims=(1,length(data))))
push!(plts, heatmap(feat1, legend=nothing))
push!(plts, heatmap(feat2, legend=nothing))
push!(plts, heatmap(feat3, legend=nothing))
plot(plts...,layout=(4,1),legend=nothing, framestyle=:box, ticks=nothing)

Online Log Filterbank Energies

using Plots
using PortAudio

ichs = 1    # number of input channels
ochs = 0    # number of output channels
len  = 512  # length of one frame data

mic  = PortAudioStream(ichs, ochs; eltype=Float32, latency=0.2, samplerate=16000.0)
spec = OnlineMelSpec(fs=16000, winlen=len, nffts=1024, nbanks=128)
while true
    frame = read(mic, len)
    feat  = spec(frame.data)
    # use feat to do your job here #
end

About

MFCC/Fbank/LPC/LPCC

License:MIT License


Languages

Language:Julia 100.0%