This repo holds the official pytorch implementation of paper: "TSI: Temporal Scale Invariant Network for Action Proposal Generation", which is accepted in ACCV 2020.
- Author: Shuming Liu, Xu Zhao, Haisheng Su, Zhilan Hu
This code is built on pytorch1.10+CUDA11
, but other version may also be fine.
To install the dependency: pip install numpy pandas easydict tqdm scipy h5py PyYAML
Change the feature root and feature name in the config files, such as in config/anet/anet_tsn.yaml
.
- Download the provided feature in "BSN". The data path should be
DATAPATH/features/tsn_anet/csv_mean_100/v_224E-VtB4k4.csv
FEATURE.name
in config should betsn_anet
- Download the provided feature in "TSP". The data path should be
DATAPATH/features/tsp_r2plus1d_34/csv_unresize/v_224E-VtB4k4.csv
FEATURE.name
in config should betsp_r2plus1d_34
- use the provided feature in "G-TAD". The data path should be
DATAPATH/features/tsn_gtad/rgb_train.h5
FEATURE.name
in config should betsn_gtad
- use the provided feature in "P-GCN". The data path should be
DATAPATH/features/i3d_pgcn_snippet8/RGB/
FEATURE.name
in config should bei3d_pgcn_snippet8
- use the provided feature in "BU-TAL". The data path should be
DATAPATH/features/i3d_butal_snippet4_clip16/video_validation_0000051.npy
FEATURE.name
in config should bei3d_butal_snippet4_clip16
- use the provided feature in "TCANet". The data path should be
DATAPATH/features/slowfast101/pkl_unresize/0_0MMzh2E3U.pkl
FEATURE.name
in config should beslowfast101/pkl_unresize
bash train.sh {config_path} {GPU_num}
For example: bash train.sh configs/anet/anet_tsn.yaml 1
python scripts/train.py {config_path} {GPU_num}
python scripts/test.py {config_path} {GPU_num} {checkpoint_path}
python scripts/post.py {config_path}
{GPU_num}
is the GPU number used for training and inference.{config_path}
is the path of config.{checkpoint_path}
is the path of loading checkpoint. If empty, load the best loss checkpoint by default.
Pretrained weights and experiment outputs can be found in Google Drive.
Method | AR@1 | AR@5 | AR@10 | AR@100 | AUC |
---|---|---|---|---|---|
BMN | 33.60 | 49.28 | 56.71 | 75.33 | 67.26 |
TSI | 32.86 | 49.69 | 57.47 | 75.47 | 68.24 |
Method | AR@1 | AR@5 | AR@10 | AR@100 | AUC |
---|---|---|---|---|---|
BMN | 34.85 | 51.38 | 58.47 | 76.07 | 68.47 |
TSI | 34.30 | 52.17 | 59.29 | 76.73 | 69.42 |
Method | AR@50 | AR@100 | AR@200 | AR@500 | AR@1000 | AUC |
---|---|---|---|---|---|---|
BMN | 40.61 | 49.79 | 57.40 | 65.75 | 70.72 | 62.08 |
TSI | 40.93 | 50.23 | 57.88 | 66.46 | 71.95 | 62.99 |
Method | AR@50 | AR@100 | AR@200 | AR@500 | AR@1000 | AUC |
---|---|---|---|---|---|---|
BMN | 33.76 | 42.70 | 50.85 | 59.83 | 65.36 | 56.18 |
TSI | 38.17 | 46.26 | 53.98 | 62.93 | 67.81 | 59.31 |
Method | AR@50 | AR@100 | AR@200 | AR@500 | AR@1000 | AUC |
---|---|---|---|---|---|---|
BMN | 40.93 | 49.99 | 56.92 | 64.66 | 68.93 | 61.20 |
TSI | 41.51 | 50.49 | 57.86 | 65.71 | 70.08 | 62.21 |
Method | AR@1 | AR@5 | AR@10 | AR@100 | AUC |
---|---|---|---|---|---|
BMN | 19.90 | 40.00 | 49.22 | 70.52 | 61.66 |
TSI | 19.38 | 41.13 | 50.87 | 71.83 | 63.25 |
We thank for the help of Tianwei Lin, Dongqi Wang.
If you find this work is useful in your research, please consider citing:
@inproceedings{liu2020tsi,
title={TSI: Temporal Scale Invariant Network for Action Proposal Generation},
author={Liu, Shuming and Zhao, Xu and Su, Haisheng and Hu, Zhilan},
booktitle={Proceedings of the Asian Conference on Computer Vision},
year={2020}
}
For any question, please contact sming256@gmail.com
.