sivareddyg / bilty-tagger

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

bi-LSTM tagger

Bidirectional Long-Short Term Memory tagger

If you use this tagger please cite our paper: http://arxiv.org/abs/1604.05529

Requirements

Installation

Download and install cnn in a directory of your choice CNNDIR:

mkdir $CNNDIR
git clone https://github.com/clab/cnn

Follow the instructions in the Installation readme. However, after compiling cnn and before compiling pycnn, apply the following patch (as bilty uses python3):

cp pycnn_py3_patch.diff $CNNDIR
cd $CNNDIR
git apply pycnn_py3_patch.diff

And compile pycnn:

make

After successful installation open python and import pycnn, you can test if the installation worked with:

>>> import pycnn
[cnn] random seed: 2809331847
[cnn] allocating memory: 512MB
[cnn] memory allocation done.

Results on UD1.3

The table below provides results on UD1.3 (iters=20, h_layers=1).

+poly is using pre-trained embeddings to initialize word embeddings. Note that for some languages it slightly hurts performance.

python src/bilty.py --cnn-seed 1512141834 --cnn-mem 1500 --train /home/$user/corpora/pos/ud1.3/orgtok/goldpos//en-ud-train.conllu --test /home/$user/corpora/pos/ud1.3/orgtok/goldpos//en-ud-test.conllu --dev /home/$user/corpora/pos/ud1.3/orgtok/goldpos//en-ud-dev.conllu --output /data/$user/experiments/bilty/predictions/bilty/en-ud-test.conllu.bilty-en-ud1.3-poly-i20-h1 --in_dim 64 --c_in_dim 100 --trainer sgd --iters 20 --sigma 0.2 --save /data/$user/experiments/bilty/models/bilty/bilty-en-ud1.3-poly-i20-h1.model --embeds embeds/poly_a/en.polyglot.txt --h_layers 1 --pred_layer 1  > /data/$user/experiments/bilty/nohup/bilty-en-ud1.3-poly-i20-h1.out 2> /data/$user/experiments/bilty/nohup/bilty.bilty-en-ud1.3-poly-i20-h1.out2
Lang i20-h1 +poly
ar 96.07 96.37
bg 98.21 98.12
ca 98.11 98.24
cs 98.63 98.60
cu 96.48 --
da 96.06 96.04
de 92.91 93.64
el 97.85 98.36
en 94.60 95.04
es 95.23 95.76
et 95.75 96.57
eu 93.86 95.40
fa 96.82 97.38
fi 94.32 95.35
fr 96.34 96.45
ga 90.50 91.29
gl 96.89 --
got 95.97 --
grc 94.36 --
he 95.25 96.78
hi 96.37 96.93
hr 94.98 96.07
hu 93.84 --
id 93.17 93.55
it 97.40 97.82
kk 77.68 --
la 90.17 --
lv 91.42 --
nl 90.02 89.87
no 97.58 97.97
pl 96.30 97.36
pt 97.21 97.46
ro 95.49 --
ru 95.69 --
sl 97.53 96.42
sv 96.49 96.76
ta 84.51 --
tr 93.81 --
zh 93.13 --

Using pre-trained embeddings often helps to improve accuracy, however, does not strictly hold for all languages.

For more information, predictions files and pre-trained models visit http://www.let.rug.nl/bplank/bilty/

Embeddings

The poly embeddings (Al-Rfou et al., 2013) can be downloaded from here (0.6GB)

A couple of remarks

The choice of 22 languages from UD1.2 (rather than 33) is described in our TACL parsing paper, Section 3.1. (Agić et al., 2016). Note, however, that the bi-LSTM tagger does not require large amounts of training data (as discussed in our paper). Therefore above are results for all languages in UD1.3 (for the canonical language subparts, i.e., those with just the language prefix, no further suffix; e.g. 'nl' but not 'nl_lassy', and those languages which are distributed with word forms).

The bilty code is a significantly refactored version of the code originally used in the paper. For example, bilty supports multi-task learning with output layers at different layers (--pred_layer), and it correctly supports stacked LSTMs (see e.g., Ballesteros et al., 2015, Dyer et al., 2015). The results on UD1.3 are obtained with bilty using no stacking (--h_layers 1).

Recommended setting for bilty:

  • 3 stacked LSTMs, predicting on outermost layer, otherwise default settings, i.e., --h_layers 3 --pred_layer 3

Reference

@inproceedings{plank:ea:2016,
  title={{Multilingual Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss}},
  author={Plank, Barbara and S{\o}gaard, Anders and Goldberg, Yoav},
  booktitle={ACL 2016, arXiv preprint arXiv:1604.05529},
  url={http://arxiv.org/abs/1604.05529},
  year={2016}
}

About

License:Other