shaovoon / concurrent_permcomb

Boost Concurrent Permutation and Combination

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Boost Concurrent Permutations and Combinations on CPU

Primary motivation

Upcoming C++17 Concurrent STL algorithms does not include parallel next_permutation and next_combination. compute_all_perm and compute_all_comb make use of next_permutation and next_combination underneath to find all the permutations and combinations. Many years ago, I had written parallel library which only deals with integer type but it exposes many internal workings. This one encapsulates the details and can permute/combine with any data types.

Note: Function overload with predicate is available.

Note: Work is still ongoing. Library is not yet submitted for Boost review and is not part of Boost Library.

Requirement

Required: C++11

Optional: Boost Multiprecision Note: Library need Boost Multiprecision for factorial(n) where n > 20. You either use the arbitrary integer(most safe) or fixed width big integer to accommodate the largest factorial.

// arbitrary integer
boost::multiprecision::cpp_int;
// 256 bit integer
boost::multiprecision::int256_t;

Compiler tested

  • Visual C++ 2015
  • GCC 5.4 Ubuntu 16.04
  • Clang 3.8 Ubuntu 16.04

Build examples with GCC and Clang

g++     CalcPerm.cpp -std=c++11 -lpthread -O2
g++     CalcComb.cpp -std=c++11 -lpthread -O2

clang++ CalcPerm.cpp -std=c++11 -lpthread -O2
clang++ CalcComb.cpp -std=c++11 -lpthread -O2

No CMakeList?

This is header-only library.

Formulae to calculate total results returned.

Calculate this in a calculator and use sum to determine the largest integer type to be used.

Total Permutation: n!
Total Combination: n! / (r! (n - r)!)

Use compute_factorial to calculate total permutation count.

Use compute_total_comb to calculate total combination count.

Limitation

next_permutation supports duplicate elements but compute_all_perm and compute_all_comb do not. Make sure every element is unique. Also make sure total results are greater than number of threads spawned.

Examples

compute_all_perm function and callback signatures shown below. Callback should catch all exceptions and return false. If exception propagate outside callback, error_callback will be invoked and processing will be stopped prematurely for the thread.

// compute_all_perm function signature
template<typename int_type, typename container_type, typename callback_type, 
    typename error_callback_type, typename predicate_type = no_predicate_type>
bool compute_all_perm(int_type thread_cnt, const container_type& cont, callback_type callback, 
    error_callback_type err_callback, predicate_type pred = predicate_type());

// callback_type signature
template<typename container_type>
struct callback_t
{
    bool operator()(const int thread_index, const container_type& cont)
    {
        return true; // can return false to cancel processing in current thread
    }
};

// error_callback_type example
template<typename container_type>
struct error_callback_t
{
    void operator()(const int thread_index, const container_type& cont, const std::string& error)
    {
        std::cerr << error << std::endl;
    }
};

// predicate_type example
template<typename T>
struct predicate_t
{
    bool operator()(T a, T b)
    {
        return a < b;
    }
};

Example on how to use compute_all_perm

#include "../permcomb/concurrent_perm.h"

void main()
{
    std::string results(11, 'A');
    std::iota(results.begin(), results.end(), 'A');
    
    int64_t thread_cnt = 2;

    concurrent_perm::compute_all_perm(thread_cnt, results, 
        [](const int thread_index, const std::string& cont) 
            { return true; } /* evaluation callback */,
        [](const int thread_index, const std::string& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */           
        );
}

Example on how to use compute_all_perm with predicate

#include "../permcomb/concurrent_perm.h"

void main()
{
    std::string results(11, 'A');
    std::iota(results.begin(), results.end(), 'A');
    
    int64_t thread_cnt = 2;

    concurrent_perm::compute_all_perm(thread_cnt, results, 
        [](const int thread_index, const std::string& cont) 
            { return true; } /* evaluation callback */,
        [](const int thread_index, const std::string& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */,            
        [](char a, char b) 
            { return a < b; } /* predicate */
        );
}

compute_all_comb function and callback signatures shown below. Callback should catch all exceptions and return false. If exception propagate outside callback, error_callback will be invoked and processing will be stopped prematurely for the thread.

// compute_all_comb function signature
template<typename int_type, typename container_type, typename callback_type, 
    typename error_callback_type, typename predicate_type = no_predicate_type>
bool compute_all_comb(int_type thread_cnt, uint32_t subset, const container_type& cont, 
    callback_type callback, error_callback_type err_callback, predicate_type pred = predicate_type())

// callback_type signature
template<typename container_type>
struct callback_t
{
    bool operator()(const int thread_index, const size_t fullset_size, const container_type& cont)
    {
        return true; // can return false to cancel processing in current thread
    }
};

// error_callback_type example
template<typename container_type>
struct error_callback_t
{
    void operator()(const int thread_index, const size_t fullset_size, 
        const container_type& cont, const std::string& error)
    {
        std::cerr << error << std::endl;
    }
};


// predicate_type example
template<typename T>
struct predicate_t
{
    bool operator()(T a, T b)
    {
        return a == b;
    }
};

Example on how to use compute_all_comb

#include "../permcomb/concurrent_comb.h"

void main()
{
    std::vector<int> fullset_vec(20);
    std::iota(fullset_vec.begin(), fullset_vec.end(), 0);
    uint32_t subset = 10;
    
    int64_t thread_cnt = 2;
    
    concurrent_comb::compute_all_comb(thread_cnt, subset, fullset_vec, 
        [] (const int thread_index, uint32_t fullset, const std::vector<int>& cont) 
            { return true; } /* evaluation callback */,
        [] (const int thread_index, uint32_t fullset, const std::vector<int>& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */,
        );
}

Example on how to use compute_all_comb with predicate

#include "../permcomb/concurrent_comb.h"

void main()
{
    std::vector<int> fullset_vec(20);
    std::iota(fullset_vec.begin(), fullset_vec.end(), 0);
    uint32_t subset = 10;
    
    int64_t thread_cnt = 2;
    
    concurrent_comb::compute_all_comb(thread_cnt, subset, fullset_vec, 
        [] (const int thread_index, uint32_t fullset, const std::vector<int>& cont) 
            { return true; } /* evaluation callback */,
        [] (const int thread_index, uint32_t fullset, const std::vector<int>& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */,
        [] (int a, int b) 
            { return a == b; } /* predicate */
        );
}

Why not pass in begin and end iterators?

Library need to know the container type to instantiate a copy in the worker thread. From the iterator type, we have no way to know the container. Iterator type is not compatible: for example string and vector iterator are not interchangeable; It is not right that user pass string iterator but library pass vector iterator to callback.

How to make use of thread_index parameter in callback?

thread_index is a zero based and consecutive number. For example when thread_cnt is 4, then thread_index would be [0..3]. Data type of thread_cnt has to be a type large enough to hold the largest factorial required.

#include "../permcomb/concurrent_perm.h"

void main()
{
    std::string results(11, 'A');
    std::iota(results.begin(), results.end(), 'A');
    
    int64_t thread_cnt = 4;
    int matched[4] = {0,0,0,0};

    concurrent_perm::compute_all_perm(thread_cnt, results, 
        [&matched](const int thread_index, const std::string& cont) /* evaluation callback */
            {
                if(...) 
                    ++matched[thread_index];
                return true;
            },
        [] (const int thread_index, const std::string& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */, 
            
        );
            
    int total_matched = matched[0] + matched[1] + matched[2] + matched[3];
    // display total_matched
}

I'll leave to the reader to fix false-sharing in the above example.

Cancellation

Cancellation is not directly supported but every callback can return false to cancel processing.

How many threads are spawned?

Answer: thread_cnt - 1. For thread_cnt = 4, 3 threads will be spawned while main thread is used to compute the 4th batch. For thread_cnt = 1, no threads is spawned, all work is done in the main thread.

How to split the work across physically separate processors?

Say you have more than 1 computer at home or can access cloud of computers, Work can be split using compute_all_perm_shard. In fact compute_all_perm calls compute_all_perm_shard to do the work as well. compute_all_perm_shard has 2 extra parameters which are cpu_index and cpu_cnt. Value of cpu_index can be [0..cpu_cnt).

#include "../permcomb/concurrent_perm.h"

void main()
{
    std::string results(11, 'A');
    std::iota(results.begin(), results.end(), 'A');
    
    int64_t thread_cnt = 4;
    
    int_type cpu_cnt = 2;
    int_type cpu_index = 0; /* 0 or 1 */
    int cpu_index_n = static_cast<int>(cpu_index);

    concurrent_perm::compute_all_perm_shard(cpu_index, cpu_cnt, thread_cnt, results, 
        [](const int thread_index, const std::string& cont) /* evaluation callback */
            {
                return true;
            },
        [] (const int thread_index, const std::string& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */, 
            
        );
}
#include "../permcomb/concurrent_comb.h"

void main()
{
    std::vector<uint32_t> fullset(fullset_size);
    std::iota(fullset.begin(), fullset.end(), 0);
    
    int64_t thread_cnt = 4;
    
    int_type cpu_cnt = 2;
    int_type cpu_index = 0; /* 0 or 1 */
    int cpu_index_n = static_cast<int>(cpu_index);

    concurrent_comb::compute_all_comb_shard(cpu_index, cpu_cnt, thread_cnt, subset_size, fullset, 
        [](const int thread_index, const size_t fullset_cnt, const std::vector<uint32_t>& cont) 
            { /* evaluation callback */
                return true;
            },
        [] (const int thread_index, const std::vector<uint32_t>& cont, const std::string& error) 
            { std::cerr << error; } /* error callback */, 
            
        );
}

Benchmark results

Intel i7 6700 CPU with 16 GB RAM with Visual C++ on Windows 10

Results for permutation of 11 elements:
Total permutations computed: 39,916,800 - 1
int64_t type used.

next_permutation:  163ms
     1 thread(s):  175ms
     2 thread(s):   95ms
     3 thread(s):   48ms
     4 thread(s):   50ms
Results for combination of 14 out of 28 elements:
Total combinations computed: 40,116,600 - 1
int128_t type used.
 
next_combination:  789ms
     1 thread(s):  808ms
     2 thread(s):  434ms
     3 thread(s):  316ms
     4 thread(s):  242ms

Diminishing returns on 4 threads

Main suspect is the Intel i7 6700 CPU is a 4 core processor where other applications are running. Need a multicore CPU with more than 4 cores to see whether diminishing perf gain issue persist!

About

Boost Concurrent Permutation and Combination

License:Other


Languages

Language:C++ 100.0%