๐ Cleaning, Exploring, and Analyzing Data โ The Pandas Way ๐ง
A hands-on journey through Pandas , diving deep into data cleaning, manipulation, transformation, and analysis โ the core of data science with Python.
This repository serves as my personal Pandas Lab ๐งช where I explore, clean, and transform data using the Pandas library.
Each notebook represents a step in mastering data manipulation , aggregation , indexing , and visualization , laying a strong foundation for advanced analytics and machine learning.
๐ก Each folder inside the Pandas directory explores a specific concept of Pandas โ from Series and DataFrames to advanced topics like GroupBy, Merging, and Time Handling.
pandas-lab/
โ
โโโ Pandas/
โโโ Series/
โ โโโ Pandas_Series-checkpoint.ipynb
โ โโโ Series_Maths_Methods_and_Indexing-checkpoint.ipynb
โ โโโ Series_Methods-checkpoint.ipynb
โ โโโ Boolean_indexing_on_series-checkpoint.ipynb
โ โโโ Series_with_Python_Functionalities-checkpoint.ipynb
โ โโโ Editing_Series-checkpoint.ipynb
โ โโโ Series_Using_read_CSV-checkpoint.ipynb
โ โโโ Plotting_graphs_on_series-checkpoint.ipynb
โ โโโ bollywood-checkpoint.csv
โ โโโ subs-checkpoint.csv
โ
โโโ DataFrame/
โ โโโ DataFrame_Creation.ipynb
โ โโโ DataFrame_Functions.ipynb
โ โโโ DataFrame_Attributes_And_Methods.ipynb
โ โโโ Filtering_a_DataFrame.ipynb
โ โโโ Adding_New_Cols.ipynb
โ โโโ Selecting_rows_&_columns_from_a_dataFrame.ipynb
โ โโโ batsman_runs_ipl.csv
โ โโโ diabetes.csv
โ โโโ ipl-matches.csv
โ โโโ movies.csv
โ
โโโ GroupBy/
โ โโโ GroupBy_object.ipynb
โ โโโ GroupBy_attributes_and_methods.ipynb
โ โโโ GroupBy_on_multiple_cols.ipynb
โ โโโ GroupBy_aggregate_method.ipynb
โ โโโ Looping_and_built-in_functions.ipynb
โ โโโ deliveries.csv
โ โโโ imdb-top-100.csv
โ
โโโ Merging_Joining_and_Concatenating/
โ โโโ Joining_and_concatenating.ipynb
โ โโโ Merging.ipynb
โ โโโ Practice_questions.ipynb
โ โโโ courses.csv
โ โโโ deliveries.csv
โ โโโ matches.csv
โ โโโ students.csv
โ โโโ reg-month1.csv
โ โโโ reg-month2.csv
โ
โโโ MultiIndexing_and_Melt/
โ โโโ MultiIndex_Series.ipynb
โ โโโ MultiIndex_DataFrame.ipynb
โ โโโ Long_Vs_Wide_Data.ipynb
โ โโโ time_series_covid19_confirmed_global.csv
โ โโโ time_series_covid19_death_global.csv
โ โโโ wideLong.png
โ
โโโ Pivot_Table/
โ โโโ Pivot_table.ipynb
โ โโโ expense_data.csv
โ
โโโ Vectorized_String_Operations/
โ โโโ Pandas_string.ipynb
โ โโโ titanic.csv
โ
โโโ Date_and_Time_in_Pandas/
โโโ date_and_time_in_pandas.ipynb
โโโ DatetimeIndex_object.ipynb
โโโ functions_and_accessors.ipynb
โโโ expense_data.csv
Notebook
Description
Pandas_Series
Introduction to Pandas Series and its core structure
Series_Maths_Methods_and_Indexing
Performing mathematical operations and exploring indexing
Series_Methods
Exploring built-in Series methods for data manipulation
Boolean_indexing_on_series
Filtering data with conditional selections
Series_with_Python_Functionalities
Integrating Series with Pythonโs native functions
Editing_Series
Modifying Series values and structure efficiently
Series_Using_read_CSV
Creating Series directly from CSV files
Plotting_graphs_on_series
Visualizing Series data using Pandasโ built-in plotting
bollywood.csv / subs.csv
Datasets used for hands-on analysis and visualization
Notebook
Description
DataFrame_Creation
Creating DataFrames from dictionaries, lists, and CSV files
DataFrame_Functions
Applying essential DataFrame functions for data transformation
DataFrame_Attributes_And_Methods
Understanding DataFrame properties, info, and key methods
Filtering_a_DataFrame
Selecting data using conditional filtering and logical operations
Adding_New_Cols
Creating and modifying columns dynamically
Selecting_rows_&_columns_from_a_dataFrame
Accessing rows and columns using loc, iloc, and label-based indexing
batsman_runs_ipl.csv / diabetes.csv / ipl-matches.csv / movies.csv
Real-world datasets for hands-on practice and exploration
Notebook
Description
GroupBy_object
Creating and exploring GroupBy objects
GroupBy_attributes_and_methods
Understanding key attributes and aggregation methods
GroupBy_on_multiple_cols
Applying grouping on multiple columns
GroupBy_aggregate_method
Using the .agg() method for complex aggregations
Looping_and_built-in_functions
Iterating over groups and applying built-in functions
deliveries.csv / imdb-top-100.csv
Practice datasets for aggregation and grouping
๐น Merging, Joining, and Concatenating
Notebook
Description
Joining_and_concatenating
Combining data vertically and horizontally
Merging
Merging datasets using keys and relationships
Practice_questions
Exercises to apply merging and joining concepts
courses.csv / deliveries.csv / matches.csv / students.csv / reg-month1.csv / reg-month2.csv
Practice datasets for combining and joining operations
๐น MultiIndexing and Melt
Notebook
Description
MultiIndex_Series
Creating and managing hierarchical Series
MultiIndex_DataFrame
Working with multi-level DataFrames
Long_Vs_Wide_Data
Converting data between long and wide formats using melt() and pivot()
time_series_covid19_confirmed_global.csv / time_series_covid19_death_global.csv / wideLong.png
Real datasets for reshaping and reformatting exercises
Notebook
Description
Pivot_table
Creating pivot tables for summarizing and analyzing data
expense_data.csv
Dataset for pivot table practice and visualization
๐น Vectorized String Operations
Notebook
Description
Pandas_string
Working with vectorized string operations for data cleaning
titanic.csv
Dataset for applying string manipulation techniques
๐น Date and Time in Pandas
Notebook
Description
date_and_time_in_pandas
Introduction to date and time operations in Pandas
DatetimeIndex_object
Understanding and working with DatetimeIndex
functions_and_accessors
Using datetime-specific functions and accessors
expense_data.csv
Dataset for datetime manipulation and analysis
Python 3.x
Pandas
NumPy
Jupyter Notebook
Shafaq Aslam
๐ Passionate learner exploring Data Analytics, Machine Learning, and AI through consistent hands-on practice.
pandas python data-analysis data-cleaning data-visualization dataframe series machine-learning data-science jupyter-notebooks learning-lab
โTurning raw data into meaningful insights โ one DataFrame at a time.โ