shafaq-aslam / pandas-lab

A comprehensive collection of Jupyter notebooks exploring Pandas, from Series and DataFrames to data cleaning, aggregation, merging, and visualization. A complete hands-on guide for mastering data manipulation and analysis with Python.

Repository from Github https://github.comshafaq-aslam/pandas-labRepository from Github https://github.comshafaq-aslam/pandas-lab

Pandas Lab Banner

๐Ÿ“Š Cleaning, Exploring, and Analyzing Data โ€” The Pandas Way ๐Ÿง 

A hands-on journey through Pandas, diving deep into data cleaning, manipulation, transformation, and analysis โ€” the core of data science with Python.


๐Ÿง  Tech Stack Badges


๐Ÿงฉ Mission Statement

This repository serves as my personal Pandas Lab ๐Ÿงช where I explore, clean, and transform data using the Pandas library.

Each notebook represents a step in mastering data manipulation, aggregation, indexing, and visualization, laying a strong foundation for advanced analytics and machine learning.


๐Ÿ“‚ Folder Structure

๐Ÿ’ก Each folder inside the Pandas directory explores a specific concept of Pandas โ€” from Series and DataFrames to advanced topics like GroupBy, Merging, and Time Handling.

pandas-lab/
โ”‚
โ””โ”€โ”€ Pandas/
    โ”œโ”€โ”€ Series/
    โ”‚   โ”œโ”€โ”€ Pandas_Series-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Series_Maths_Methods_and_Indexing-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Series_Methods-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Boolean_indexing_on_series-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Series_with_Python_Functionalities-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Editing_Series-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Series_Using_read_CSV-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ Plotting_graphs_on_series-checkpoint.ipynb
    โ”‚   โ”œโ”€โ”€ bollywood-checkpoint.csv
    โ”‚   โ””โ”€โ”€ subs-checkpoint.csv
    โ”‚
    โ”œโ”€โ”€ DataFrame/
    โ”‚   โ”œโ”€โ”€ DataFrame_Creation.ipynb
    โ”‚   โ”œโ”€โ”€ DataFrame_Functions.ipynb
    โ”‚   โ”œโ”€โ”€ DataFrame_Attributes_And_Methods.ipynb
    โ”‚   โ”œโ”€โ”€ Filtering_a_DataFrame.ipynb
    โ”‚   โ”œโ”€โ”€ Adding_New_Cols.ipynb
    โ”‚   โ”œโ”€โ”€ Selecting_rows_&_columns_from_a_dataFrame.ipynb
    โ”‚   โ”œโ”€โ”€ batsman_runs_ipl.csv
    โ”‚   โ”œโ”€โ”€ diabetes.csv
    โ”‚   โ”œโ”€โ”€ ipl-matches.csv
    โ”‚   โ””โ”€โ”€ movies.csv
    โ”‚
    โ”œโ”€โ”€ GroupBy/
    โ”‚   โ”œโ”€โ”€ GroupBy_object.ipynb
    โ”‚   โ”œโ”€โ”€ GroupBy_attributes_and_methods.ipynb
    โ”‚   โ”œโ”€โ”€ GroupBy_on_multiple_cols.ipynb
    โ”‚   โ”œโ”€โ”€ GroupBy_aggregate_method.ipynb
    โ”‚   โ”œโ”€โ”€ Looping_and_built-in_functions.ipynb
    โ”‚   โ”œโ”€โ”€ deliveries.csv
    โ”‚   โ””โ”€โ”€ imdb-top-100.csv
    โ”‚
    โ”œโ”€โ”€ Merging_Joining_and_Concatenating/
    โ”‚   โ”œโ”€โ”€ Joining_and_concatenating.ipynb
    โ”‚   โ”œโ”€โ”€ Merging.ipynb
    โ”‚   โ”œโ”€โ”€ Practice_questions.ipynb
    โ”‚   โ”œโ”€โ”€ courses.csv
    โ”‚   โ”œโ”€โ”€ deliveries.csv
    โ”‚   โ”œโ”€โ”€ matches.csv
    โ”‚   โ”œโ”€โ”€ students.csv
    โ”‚   โ”œโ”€โ”€ reg-month1.csv
    โ”‚   โ””โ”€โ”€ reg-month2.csv
    โ”‚
    โ”œโ”€โ”€ MultiIndexing_and_Melt/
    โ”‚   โ”œโ”€โ”€ MultiIndex_Series.ipynb
    โ”‚   โ”œโ”€โ”€ MultiIndex_DataFrame.ipynb
    โ”‚   โ”œโ”€โ”€ Long_Vs_Wide_Data.ipynb
    โ”‚   โ”œโ”€โ”€ time_series_covid19_confirmed_global.csv
    โ”‚   โ”œโ”€โ”€ time_series_covid19_death_global.csv
    โ”‚   โ””โ”€โ”€ wideLong.png
    โ”‚
    โ”œโ”€โ”€ Pivot_Table/
    โ”‚   โ”œโ”€โ”€ Pivot_table.ipynb
    โ”‚   โ””โ”€โ”€ expense_data.csv
    โ”‚
    โ”œโ”€โ”€ Vectorized_String_Operations/
    โ”‚   โ”œโ”€โ”€ Pandas_string.ipynb
    โ”‚   โ””โ”€โ”€ titanic.csv
    โ”‚
    โ””โ”€โ”€ Date_and_Time_in_Pandas/
        โ”œโ”€โ”€ date_and_time_in_pandas.ipynb
        โ”œโ”€โ”€ DatetimeIndex_object.ipynb
        โ”œโ”€โ”€ functions_and_accessors.ipynb
        โ””โ”€โ”€ expense_data.csv

๐Ÿงฎ Topics Covered

๐Ÿ”น Series

Notebook Description
Pandas_Series Introduction to Pandas Series and its core structure
Series_Maths_Methods_and_Indexing Performing mathematical operations and exploring indexing
Series_Methods Exploring built-in Series methods for data manipulation
Boolean_indexing_on_series Filtering data with conditional selections
Series_with_Python_Functionalities Integrating Series with Pythonโ€™s native functions
Editing_Series Modifying Series values and structure efficiently
Series_Using_read_CSV Creating Series directly from CSV files
Plotting_graphs_on_series Visualizing Series data using Pandasโ€™ built-in plotting
bollywood.csv / subs.csv Datasets used for hands-on analysis and visualization

๐Ÿ”น DataFrame

Notebook Description
DataFrame_Creation Creating DataFrames from dictionaries, lists, and CSV files
DataFrame_Functions Applying essential DataFrame functions for data transformation
DataFrame_Attributes_And_Methods Understanding DataFrame properties, info, and key methods
Filtering_a_DataFrame Selecting data using conditional filtering and logical operations
Adding_New_Cols Creating and modifying columns dynamically
Selecting_rows_&_columns_from_a_dataFrame Accessing rows and columns using loc, iloc, and label-based indexing
batsman_runs_ipl.csv / diabetes.csv / ipl-matches.csv / movies.csv Real-world datasets for hands-on practice and exploration

๐Ÿ”น GroupBy

Notebook Description
GroupBy_object Creating and exploring GroupBy objects
GroupBy_attributes_and_methods Understanding key attributes and aggregation methods
GroupBy_on_multiple_cols Applying grouping on multiple columns
GroupBy_aggregate_method Using the .agg() method for complex aggregations
Looping_and_built-in_functions Iterating over groups and applying built-in functions
deliveries.csv / imdb-top-100.csv Practice datasets for aggregation and grouping

๐Ÿ”น Merging, Joining, and Concatenating

Notebook Description
Joining_and_concatenating Combining data vertically and horizontally
Merging Merging datasets using keys and relationships
Practice_questions Exercises to apply merging and joining concepts
courses.csv / deliveries.csv / matches.csv / students.csv / reg-month1.csv / reg-month2.csv Practice datasets for combining and joining operations

๐Ÿ”น MultiIndexing and Melt

Notebook Description
MultiIndex_Series Creating and managing hierarchical Series
MultiIndex_DataFrame Working with multi-level DataFrames
Long_Vs_Wide_Data Converting data between long and wide formats using melt() and pivot()
time_series_covid19_confirmed_global.csv / time_series_covid19_death_global.csv / wideLong.png Real datasets for reshaping and reformatting exercises

๐Ÿ”น Pivot Table

Notebook Description
Pivot_table Creating pivot tables for summarizing and analyzing data
expense_data.csv Dataset for pivot table practice and visualization

๐Ÿ”น Vectorized String Operations

Notebook Description
Pandas_string Working with vectorized string operations for data cleaning
titanic.csv Dataset for applying string manipulation techniques

๐Ÿ”น Date and Time in Pandas

Notebook Description
date_and_time_in_pandas Introduction to date and time operations in Pandas
DatetimeIndex_object Understanding and working with DatetimeIndex
functions_and_accessors Using datetime-specific functions and accessors
expense_data.csv Dataset for datetime manipulation and analysis

๐Ÿ“š Learning Resources


๐Ÿงฐ Tools & Environment

  • Python 3.x
  • Pandas
  • NumPy
  • Jupyter Notebook

โœจ Author

Shafaq Aslam
๐Ÿ“ Passionate learner exploring Data Analytics, Machine Learning, and AI through consistent hands-on practice.


๐Ÿ”– Tags for SEO

pandas python data-analysis data-cleaning data-visualization dataframe series machine-learning data-science jupyter-notebooks learning-lab


โ€œTurning raw data into meaningful insights โ€” one DataFrame at a time.โ€

About

A comprehensive collection of Jupyter notebooks exploring Pandas, from Series and DataFrames to data cleaning, aggregation, merging, and visualization. A complete hands-on guide for mastering data manipulation and analysis with Python.


Languages

Language:Jupyter Notebook 100.0%