VarDial19 shared task: discriminating between mainland and taiwan variation of mandarin chinese -- DMT
Download dmt data here, put it in raw_data
dir.
Cut long sentences into multiple shorter sub-sentences and replace the original sentence in the training data.
-
TextCNN, EMNLP2014
Kim et al. Convolutional Neural Networks for Sentence Classification. -
DCNN, ACL2014
Kalchbrenner et al. A Convolutional Neural Network for Modelling Sentences -
RCNN, AAAI2015
Lai et al. Recurrent Convolutional Neural Networks for Text Classification. -
HAN, NAACL-HLT2016
Yang et al. Hierarchical Attention Networks for Document Classification. -
DPCNN, ACL2017
Johnson et al. Deep Pyramid Convolutional Neural Networks for Text Categorization. -
VDCNN, EACL2017
Conneau et al. Very Deep Convolutional Networks for Text Classification. -
MultiTextCNN
Extension of textcnn, stacking multiple cnns with the same filter size. -
BiLSTM
Bidirectional lstm + max pooling over time. -
RNNCNN
Bidirectional gru + conv + max pooling & avg pooling. -
CNNRNN
Conv + max pooling + Bidirectional gru + max pooling over time.
-
features
binary ngram(1-3), tf ngram(1-3), tfidf ngram(1-3), skip ngram (1-3 skip bigram or trigram)in character & word level, pos ngram -
models
lr, svm, navie-bayers, random-forest, gradientboost, xgboost
Learn similarities between the same dialects and dissimilarities between different dialects.
-
mean ensemble
-
max ensemble
-
majortiy-vote ensemble
-
lda
-
xgboost
-
rf
-
lightgbm
python3 preprocess.py
python3 train.py
python3 ensemble_models.py
- Simplified
model | val_acc | val_f1 | train_time(one titan x) |
---|---|---|---|
simplified_bilstm_word_w2v_data_tune | 0.9 | 0.8996 | 00:08:26 |
simplified_bilstm_word_w2v_data_tune_0.48 | 0.9015 | 0.9016 | - |
simplified_bilstm_word_w2v_data_tune_0.46 | 0.902 | 0.9025 | - |
simplified_aug_bilstm_word_w2v_data_tune | 0.8965 | 0.8965 | 00:10:00 |
simlifiedd_cnnrnn_word_w2v_data_tune | 0.8935 | 0.8923 | 00:09:07 |
simplified_dcnn_word_w2v_data_tune | 0.897 | 0.8971 | 00:02:08 |
simplified_dpcnn_word_w2v_data_tune | 0.8925 | 0.8932 | 00:00:39 |
simplified_han_word_w2v_data_tune | 0.8915 | 0.8896 | 00:06:50 |
simplified_multicnn_word_w2v_data_tune | 0.5 | 0.0 | 00:01:13 |
simplified_rcnn_word_w2v_data_tune | 0.8985 | 0.8965 | 00:08:27 |
simplified_rnncnn_word_w2v_data_tune | 0.895 | 0.8960 | 00:06:09 |
simplified_cnn_word_w2v_data_tune | 0.8965 | 0.8998 | 00:00:43 |
simplified_vdcnn_word_w2v_data_tune | 0.871 | 0.8716 | 00:18:03 |
simplified_bilstm_word_w2v_data_fix | 0.8445 | 0.8449 | 00:16:23 |
simplified_dcnn_word_w2v_data_fix | 0.816 | 0.8122 | 00:03:46 |
simplified_dpcnn_word_w2v_data_fix | 0.8245 | 0.8152 | 00:00:57 |
simplified_han_word_w2v_data_fix | 0.8345 | 0.8346 | 00:15:44 |
simplified_multicnn_word_w2v_data_fix | 0.5 | 0.6667 | 00:01:10 |
simplified_rcnn_word_w2v_data_fix | 0.844 | 0.8421 | 00:12:03 |
simplified_rnncnn_word_w2v_data_fix | 0.8335 | 0.8316 | 00:09:07 |
simplified_cnn_word_w2v_data_fix | 0.825 | 0.8227 | 00:00:46 |
simplified_vdcnn_word_w2v_data_fix | 0.7935 | 0.7800 | 00:11:59 |
simplified_bilstm_char_w2v_data_tune | 0.849 | 0.8442 | 00:26:15 |
simplified_dcnn_char_w2v_data_tune | 0.8525 | 0.8509 | 00:04:22 |
simplified_dpcnn_char_w2v_data_tune | 0.8605 | 0.8600 | 00:01:06 |
simplified_han_char_w2v_data_tune | 0.5 | 0.0 | 00:11:57 |
simplified_multicnn_char_w2v_data_tune | 0.5 | 0.0 | 00:02:17 |
simplified_rcnn_char_w2v_data_tune | 0.85 | 0.8416 | 00:20:21 |
simplified_rnncnn_char_w2v_data_tune | 0.8585 | 0.8573 | 00:16:44 |
simplified_cnn_char_w2v_data_tune | 0.874 | 0.8746 | 00:02:41 |
simplified_vdcnn_char_w2v_data_tune | 0.5095 | 0.1264 | 00:06:58 |
simplified_bilstm_char_w2v_data_fix | 0.809 | 0.8068 | 00:35:03 |
simplified_dcnn_char_w2v_data_fix | 0.7565 | 0.7514 | 00:04:49 |
simplified_dpcnn_char_w2v_data_fix | 0.7985 | 0.8000 | 00:02:36 |
simplified_han_char_w2v_data_fix | 0.576 | 0.6428 | 00:11:57 |
simplified_multicnn_char_w2v_data_fix | 0.5 | 0.6667 | 00:02:11 |
simplified_rcnn_char_w2v_data_fix | 0.8145 | 0.8179 | 00:36:16 |
simplified_rnncnn_char_w2v_data_fix | 0.7945 | 0.7876 | 00:19:18 |
simplified_cnn_char_w2v_data_fix | 0.8155 | 0.8073 | 00:02:30 |
simplified_vdcnn_char_w2v_data_fix | 0.529 | 0.1751 | 00:12:29 |
- traditional
model | val_acc | val_f1 | train_time(one titan x) |
---|---|---|---|
traditional_bilstm_word_w2v_data_tune | 0.9115 | 0.9097 | 00:09:07 |
traditional_bilstm_word_w2v_data_tune_0.48 | 0.913 | 0.9116 | - |
traditional_bilstm_word_w2v_data_tune_0.46 | 0.912 | 0.9108 | - |
traditional_cnnrnn_word_w2v_data_tune | 0.908 | 0.9079 | 00:07:07 |
traditional_dcnn_word_w2v_data_tune | 0.908 | 0.9089 | 00:02:17 |
traditional_dpcnn_word_w2v_data_tune | 0.907 | 0.9067 | 00:01:06 |
traditional_han_word_w2v_data_tune | 0.902 | - | 00:07:18 |
traditional_multicnn_word_w2v_data_tune | 0.5 | 0.6667 | 00:01:30 |
traditional_rcnn_word_w2v_data_tune | 0.912 | 0.9110 | 00:07:56 |
traditional_rnncnn_word_w2v_data_tune | 0.9095 | - | 00:06:38 |
traditional_cnn_word_w2v_data_tune | 0.909 | 0.9084 | 00:01:00 |
traditional_vdcnn_word_w2v_data_tune | 0.885 | 0.8864 | 00:13:08 |
traditional_bilstm_word_w2v_data_fix | 0.8475 | 0.8508 | 00:15:56 |
traditional_dcnn_word_w2v_data_fix | 0.834 | 0.8302 | 00:02:34 |
traditional_dpcnn_word_w2v_data_fix | 0.839 | 0.8382 | 00:01:02 |
traditional_han_word_w2v_data_fix | 0.8535 | 0.8539 | 00:11:47 |
traditional_multicnn_word_w2v_data_fix | 0.5 | 0.6667 | 00:01:26 |
traditional_rcnn_word_w2v_data_fix | 0.8545 | 0.8522 | 00:12:38 |
traditional_rnncnn_word_w2v_data_fix | 0.8505 | 0.8510 | 00:10:31 |
traditional_cnn_word_w2v_data_fix | 0.842 | 0.8326 | 00:01:13 |
traditional_vdcnn_word_w2v_data_fix | 0.8005 | 0.7944 | 00:11:22 |
traditional_bilstm_char_w2v_data_tune | 0.8635 | 0.8616 | 00:24:57 |
traditional_dcnn_char_w2v_data_tune | 0.8705 | 0.8684 | 00:04:57 |
traditional_dpcnn_char_w2v_data_tune | 0.884 | 0.8850 | 00:02:59 |
traditional_han_char_w2v_data_tune | 0.5 | 0.0 | 00:13:05 |
traditional_multicnn_char_w2v_data_tune | 0.5 | 0.0 | 00:02:32 |
traditional_rcnn_char_w2v_data_tune | 0.866 | 0.8640 | 00:19:07 |
traditional_rnncnn_char_w2v_data_tune | 0.8665 | 0.8607 | 00:19:32 |
traditional_cnn_char_w2v_data_tune | 0.878 | 0.8803 | 00:02:41 |
traditional_vdcnn_char_w2v_data_tune | 0.5015 | 0.0404 | 00:08:50 |
traditional_bilstm_char_w2v_data_fix | 0.825 | 0.8234 | 00:44:19 |
traditional_dcnn_char_w2v_data_fix | 0.781 | 0.768 | 00:06:27 |
traditional_dpcnn_char_w2v_data_fix | 0.8055 | 0.8052 | 00:02:27 |
traditional_han_char_w2v_data_fix | 0.5 | 0.0 | 00:12:30 |
traditional_multicnn_char_w2v_data_fix | 0.5 | 0.00 | 00:02:28 |
traditional_rcnn_char_w2v_data_fix | 0.8145 | 0.8179 | 00:33:37 |
traditional_rnncnn_char_w2v_data_fix | 0.8025 | 0.8045 | 00:27:34 |
traditional_cnn_char_w2v_data_fix | 0.823 | 0.8281 | 00:03:52 |
traditional_vdcnn_char_w2v_data_fix | 0.5 | 0.0176 | 00:07:40 |
- conclusion
- word level input is better than charracter level input
- word2vec is better than fasttext and glove
- fine-tuning word embeddings is better than fixing word embeddings
BiLSTM
performs best, but other models exceptvdccn
andmulticnn
performs very close.- data agumentaion doesn't help.
- skip ngram doesn't help
- Simplified
model | val_acc | val_f1 | val_p | val_r |
---|---|---|---|---|
simplified_svm_binary_char_(1, 1) | 0.8115 | 0.8103 | 0.8156 | 0.805 |
simplified_svm_binary_char_(2, 2) | 0.862 | 0.8602 | 0.8717 | 0.849 |
simplified_svm_binary_char_(3, 3) | 0.876 | 0.8749 | 0.8829 | 0.867 |
simplified_svm_binary_char_(4, 4) | 0.853 | 0.8498 | 0.8684 | 0.832 |
simplified_svm_binary_char_(5, 5) | 0.816 | 0.8073 | 0.8473 | 0.771 |
simplified_svm_binary_char_(6, 6) | 0.7905 | 0.7655 | 0.8691 | 0.684 |
simplified_svm_binary_char_(1, 3) | 0.8775 | 0.8766 | 0.8832 | 0.87 |
simplified_svm_binary_char_(2, 3) | 0.879 | 0.8780 | 0.8852 | 0.871 |
simplified_svm_binary_word_(1, 1) | 0.8385 | 0.8341 | 0.8574 | 0.812 |
simplified_svm_binary_word_(2, 2) | 0.7075 | 0.6118 | 0.9093 | 0.461 |
simplified_svm_binary_word_(3, 3) | 0.5515 | 0.1882 | 0.9905 | 0.104 |
simplified_svm_binary_word_(4, 4) | 0.515 | 0.0582 | 1.0 | 0.03 |
simplified_svm_binary_word_(5, 5) | 0.5035 | 0.6682 | 0.5018 | 1.0 |
simplified_svm_binary_word_(6, 6) | 0.5015 | 0.6673 | 0.5008 | 1.0 |
simplified_svm_binary_char_(2, 3)word(1, 1) | 0.877 | 0.8760 | 0.8831 | 0.869 |
simplified_svm_tf_char_(3, 3) | 0.8705 | 0.8694 | 0.8769 | 0.862 |
simplified_svm_tf_char_(2, 3) | 0.881 | 0.8791 | 0.8928 | 0.866 |
simplified_svm_tf_word_(1, 1) | 0.837 | 0.8337 | 0.8510 | 0.817 |
simplified_svm_tf_char_(2, 3)word(1, 1) | 0.88 | 0.8787 | 0.8877 | 0.87 |
simplified_svm_tfidf_char_(3, 3) | 0.8935 | 0.8926 | 0.8994 | 0.886 |
simplified_svm_tfidf_char_(2, 3) | 0.8955 | 0.8946 | 0.9023 | 0.887 |
simplified_svm_tfidf_word_(1, 1) | 0.851 | 0.8482 | 0.8641 | 0.833 |
simplified_svm_tfidf_char_(2, 3)word(1, 1) | 0.8885 | 0.8881 | 0.8912 | 0.885 |
simplified_sgd_binary_char_(3, 3) | 0.8725 | 0.8709 | 0.8821 | 0.86 |
simplified_sgd_binary_char_(2, 3) | 0.872 | 0.8698 | 0.8851 | 0.855 |
simplified_sgd_binary_word_(1, 1) | 0.8455 | 0.8446 | 0.8493 | 0.84 |
simplified_sgd_binary_char_(2, 3)word(1, 1) | 0.8785 | 0.8759 | 0.8946 | 0.858 |
simplified_sgd_tf_char_(3, 3) | 0.8655 | 0.8582 | 0.9075 | 0.814 |
simplified_sgd_tf_char_(2, 3) | 0.865 | 0.8653 | 0.8635 | 0.867 |
simplified_sgd_tf_word_(1, 1) | 0.8495 | 0.8477 | 0.8577 | 0.838 |
simplified_sgd_tf_char_(2, 3)word(1, 1) | 0.864 | 0.8653 | 0.8568 | 0.874 |
simplified_sgd_tfidf_char_(3, 3) | 0.876 | 0.8745 | 0.8852 | 0.864 |
simplified_sgd_tfidf_char_(2, 3) | 0.88 | 0.8777 | 0.8950 | 0.861 |
simplified_sgd_tfidf_word_(1, 1) | 0.853 | 0.8469 | 0.8837 | 0.813 |
simplified_sgd_tfidf_char_(2, 3)word(1, 1) | 0.8875 | 0.8866 | 0.8934 | 0.88 |
simplified_lr_binary_char_(1, 1) | 0.8185 | 0.8167 | 0.8246 | 0.809 |
simplified_lr_binary_char_(2, 2) | 0.872 | 0.8701 | 0.8835 | 0.857 |
simplified_lr_binary_char_(3, 3) | 0.879 | 0.8775 | 0.8883 | 0.867 |
simplified_lr_binary_char_(4, 4) | 0.8505 | 0.8459 | 0.8725 | 0.821 |
simplified_lr_binary_char_(2, 3) | 0.8865 | 0.8854 | 0.8939 | 0.877 |
simplified_lr_binary_char_(1, 3) | 0.886 | 0.8847 | 0.8947 | 0.875 |
simplified_lr_binary_word_(1, 1) | 0.859 | 0.8545 | 0.8827 | 0.828 |
simplified_lr_binary_word_(2, 2) | 0.706 | 0.6111 | 0.9023 | 0.462 |
simplified_lr_binary_word_(3, 3) | 0.552 | 0.1899 | 0.9905 | 0.105 |
simplified_lr_binary_char_(2, 3)word(1, 1) | 0.8875 | 0.8865 | 0.8942 | 0.879 |
simplified_mnb_binary_char_(1, 1) | 0.8225 | 0.8222 | 0.8235 | 0.821 |
simplified_mnb_binary_char_(2, 2) | 0.8935 | 0.8942 | 0.8885 | 0.9 |
simplified_mnb_binary_char_(3, 3) | 0.9015 | 0.9035 | 0.8859 | 0.922 |
simplified_aug_mnb_binary_char_(3, 3) | 0.8985 | 0.9007 | 0.8813 | 0.921 |
simplified_mnb_binary_char_(4, 4) | 0.8835 | 0.8855 | 0.8705 | 0.901 |
simplified_mnb_binary_char_(1, 3) | 0.903 | 0.9040 | 0.8951 | 0.913 |
simplified_mnb_binary_char_(2, 3) | 0.908 | 0.9094 | 0.8953 | 0.924 |
simplified_mnb_binary_char_(2, 3)_0.46 | 0.9095 | 0.91114 | 0.8949 | 0.928 |
simplified_mnb_binary_char_(2, 3)_0.48 | 0.9095 | 0.91105 | 0.89565 | 0.927 |
simplified_aug_mnb_binary_char_(2, 3) | 0.91 | 0.9111 | 0.8996 | 0.923 |
simplified_mnb_binary_word_(1, 1) | 0.878 | 0.8790 | 0.8720 | 0.886 |
simplified_mnb_binary_word_(2, 2) | 0.709 | 0.6141 | 0.9114 | 0.463 |
simplified_mnb_binary_word_(3, 3) | 0.552 | 0.1898 | 0.9905 | 0.105 |
simplified_aug_mnb_binary_word_(1, 1) | 0.872 | 0.8756 | 0.8516 | 0.901 |
simplified_mnb_binary_char_(2, 3)word(1, 1) | 0.9055 | 0.9070 | 0.8925 | 0.922 |
simplified_aug_mnb_binary_char_(2, 3)word(1, 1) | 0.906 | 0.9076 | 0.8926 | 0.923 |
simplified_mnb_tf_char_(3, 3) | 0.901 | 0.9030 | 0.8848 | 0.922 |
simplified_mnb_tf_char_(2, 3) | 0.906 | 0.9077 | 0.8919 | 0.924 |
simplified_mnb_tf_word_(1, 1) | 0.8795 | 0.8800 | 0.8761 | 0.884 |
simplified_mnb_tf_char_(2, 3)word(1, 1) | 0.9035 | 0.9052 | 0.8898 | 0.921 |
simplified_mnb_tfidf_char_(3, 3) | 0.8945 | 0.8969 | 0.8768 | 0.918 |
simplified_mnb_tfidf_char_(2, 3) | 0.8995 | 0.9011 | 0.8867 | 0.916 |
simplified_mnb_tfidf_word_(1, 1) | 0.873 | 0.8745 | 0.8643 | 0.885 |
simplified_mnb_tfidf_char_(2, 3)word(1, 1) | 0.895 | 0.8970 | 0.8805 | 0.914 |
- traditional
model | val_acc | val_f1 | val_p | val_r |
---|---|---|---|---|
traditional_svm_binary_char_(1, 1) | 0.8325 | 0.8321 | 0.8342 | 0.83 |
traditional_svm_binary_char_(2, 2) | 0.8765 | 0.8747 | 0.8877 | 0.862 |
traditional_svm_binary_char_(3, 3) | 0.883 | 0.8821 | 0.8892 | 0.875 |
traditional_svm_binary_char_(4, 4) | 0.86 | 0.8574 | 0.8734 | 0.842 |
traditional_svm_binary_char_(1, 3) | 0.894 | 0.8930 | 0.9012 | 0.885 |
traditional_svm_binary_char_(1, 3) | 0.8895 | 0.8891 | 0.8922 | 0.886 |
traditional_svm_binary_word_(1, 1) | 0.8435 | 0.8412 | 0.8538 | 0.829 |
traditional_svm_binary_word_(2, 2) | 0.657 | 0.7380 | 0.5970 | 0.966 |
traditional_svm_binary_word_(3, 3) | 0.54 | 0.6850 | 0.5208 | 1.0 |
traditional_svm_binary_char_(2, 3)word(1, 1) | 0.897 | 0.8963 | 0.9026 | 0.89 |
traditional_lr_binary_char_(1, 1) | 0.8455 | 0.8443 | 0.8508 | 0.838 |
traditional_lr_binary_char_(2, 2) | 0.889 | 0.8874 | 0.9002 | 0.875 |
traditional_lr_binary_char_(3, 3 | 0.884 | 0.8825 | 0.8943 | 0.871 |
traditional_lr_binary_char_(4, 4) | 0.857 | 0.8529 | 0.8782 | 0.829 |
traditional_lr_binary_char_(2, 3) | 0.896 | 0.8947 | 0.9057 | 0.884 |
traditional_lr_binary_char_(1, 3) | 0.899 | 0.8979 | 0.9080 | 0.888 |
traditional_lr_binary_word_(1, 1) | 0.8635 | 0.8591 | 0.8879 | 0.832 |
traditional_lr_binary_word_(2, 2) | 0.707 | 0.6124 | 0.9043 | 0.463 |
traditional_lr_binary_word_(3, 3) | 0.552 | 0.1899 | 0.9906 | 0.105 |
traditional_lr_binary_char_(2, 3)word(1, 1) | 0.899 | 0.8979 | 0.9071 | 0.889 |
traditional_mnb_binary_char_(1, 1) | 0.848 | 0.8486 | 0.8452 | 0.852 |
traditional_mnb_binary_char_(2, 2) | 0.91 | 0.9104 | 0.9059 | 0.915 |
traditional_mnb_binary_char_(3, 3) | 0.915 | 0.9166 | 0.8998 | 0.934 |
traditional_mnb_binary_char_(4, 4) | 0.891 | 0.8930 | 0.8767 | 0.91 |
traditional_aug_mnb_binary_char_(3, 3) | 0.9105 | 0.9122 | 0.8951 | 0.93 |
traditional_mnb_binary_char_(2, 3) | 0.9225 | 0.9234 | 0.9130 | 0.934 |
traditional_mnb_binary_char_(2, 3)_0.46 | 0.9225 | 0.9235 | 0.9122 | 0.935 |
traditional_mnb_binary_char_(2, 3)_0.48 | 0.9225 | 0.9234 | 0.9130 | 0.934 |
traditional_mnb_binary_char_(1, 3) | 0.917 | 0.9176 | 0.9112 | 0.924 |
traditional_aug_mnb_binary_char_(2, 3) | 0.923 | 0.9237 | 0.9155 | 0.932 |
traditional_mnb_binary_word_(1, 1) | 0.8855 | 0.8864 | 0.8791 | 0.894 |
traditional_aug_mnb_binary_word_(1, 1) | 0.8795 | 0.8829 | 0.8584 | 0.909 |
traditional_mnb_binary_word_(2, 2) | 0.71 | 0.6154 | 0.9134 | 0.464 |
traditional_mnb_binary_word_(3, 3) | 0.552 | 0.1899 | 0.9905 | 0.105 |
traditional_mnb_binary_char_(2, 3)word(1, 1) | 0.92 | 0.9211 | 0.9085 | 0.934 |
traditional_aug_mnb_binary_char_(2, 3)word(1, 1) | 0.918 | 0.9192 | 0.9058 | 0.933 |
- conclusion
- char trigram is better than char unigram and char bigram, word unigram is better than word bigram and word trigram
- combine bigram and trigram helps, but further combine word unigram doesn't make a difference
- binary vectors, tf weighted vectors and tf-idf weighted vectors have very close performace
- navie bayers is a very strong classifier on this task
- data agumentation doesn't make a difference
- skip ngram doeen't help, so does pos ngram
Not helping.
- simplified
ensemble_model | ensemble_type | val_acc | val_f1 | val_p | val_r |
---|---|---|---|---|---|
bilstm_word mnb_binary_char_(2, 3) | mean | 0.913 | 0.9137 | 0.9065 | 0.921 |
bilstm_word mnb_binary_char_(2, 3)_0.46 | mean | 0.9135 | 0.9148 | 0.9011 | 0.929 |
bilstm_word mnb_binary_char_(2, 3)_0.48 | mean | 0.9135 | 0.9144 | 0.9050 | 0.924 |
bilstm_word mnb_bianry_char_(2, 3) | max | 0.913 | 0.9137 | 0.9065 | 0.921 |
bilstm_word mnb_binary_char_(2, 3)_0.46 | max | 0.913 | 0.9137 | 0.9065 | 0.921 |
bilstm_word mnb_binary_char_(2, 3)_0.48 | max | 0.913 | 0.9137 | 0.9065 | 0.921 |
bilstm_word mnb_bianry_char_(2, 3) | vote | 0.908 | 0.9094 | 0.8953 | 0.924 |
bilstm_word mnb_binary_char_(2, 3)_0.4 | xgboost | 0.9105 | 0.9114 | 0.9020 | 0.921 |
bilstm_word mnb_binary_char_(2, 3)_0.4 | svm | 0.9065 | 0.9067 | 0.9044 | 0.909 |
bilstm_word mnb_binary_char_(2, 3)_0.4 | lda | 0.906 | 0.9061 | 0.9044 | 0.908 |
bilstm_word mnb_binary_char_(2, 3) | xgboost | 0.9075 | 0.9076 | 0.9062 | 0.909 |
bilstm_word mnb_binary_char_(2, 3) | svm | 0.9065 | 0.9067 | 0.9044 | 0.909 |
bilstm_word mnb_binary_char_(2, 3) | lda | 0.9055 | 0.9056 | 0.9043 | 0.907 |
svm_lr_mnb_binary_char_(2, 3) | gnb | 0.8915 | 0.8910 | 0.8951 | 0.887 |
svm_lr_mnb_binary_char_(2, 3) | mnb | 0.903 | 0.9063 | 0.8759 | 0.939 |
svm_lr_mnb_binary_char_(2, 3)_0.52 | mnb | 0.905 | 0.9079 | 0.8842 | 0.932 |
svm_lr_mnb_binary_char_(2, 3)_0.56 | mnb | 0.907 | 0.907 | 0.907 | 0.907 |
svm_lr_mnb_binary_char_(2, 3) | mean | 0.9025 | 0.9029 | 0.8989 | 0.907 |
svm_lr_mnb_binary_char_(2, 3) | max | 0.908 | 0.9089 | 0.9 | 0.918 |
svm_lr_mnb_binary_char_(2, 3) | vote | 0.888 | 0.8869 | 0.8959 | 0.878 |
svm_lr_mnb_binary_char_(2, 3)_0.4 | max | 0.91 | 0.9111 | 0.9003 | 0.922 |
all_dl_model | gnb | 0.9005 | 0.9017 | 0.8907 | 0.913 |
all_dl_model_0.56 | lr | 0.9015 | 0.9010 | 0.9060 | 0.896 |
all_dl_model | mean | 0.905 | 0.9046 | 0.9083 | 0.901 |
all_dl_model | max | 0.9015 | 0.9010 | 0.9060 | 0.896 |
all_dl_model | vote | 0.906 | 0.9057 | 0.9085 | 0.903 |
- traditional
ensemble_model | ensemble_type | val_acc | val_f1 | val_p | val_r |
---|---|---|---|---|---|
bilstm_word mnb_binary_char_(2, 3) | mean | 0.924 | 0.9242 | 0.9223 | 0.926 |
bilstm_word mnb_binary_char_(2, 3)_0.46 | mean | 0.925 | 0.9257 | 0.9166 | 0.935 |
bilstm_word mnb_binary_char_(2, 3)_0.48 | mean | 0.926 | 0.9264 | 0.9218 | 0.931 |
bilstm_word mnb_bianry_char_(2, 3) | max | 0.924 | 0.9242 | 0.9223 | 0.926 |
bilstm_word mnb_binary_char_(2, 3)_0.46 | max | 0.924 | 0.9242 | 0.9223 | 0.926 |
bilstm_word mnb_binary_char_(2, 3)_0.48 | max | 0.924 | 0.9242 | 0.9223 | 0.926 |
bilstm_word mnb_bianry_char_(2, 3) | vote | 0.9225 | 0.9234 | 0.9130 | 0.934 |
bilstm_word mnb_binary_char_(2, 3)_0.46 | vote | 0.924 | 0.9242 | 0.9223 | 0.926 |
bilstm_word mnb_binary_char_(2, 3)_0.48 | vote | 0.924 | 0.9242 | 0.9223 | 0.926 |
bilstm_word mnb_binary_char_(2, 3) | gnb | 0.9215 | 0.9216 | 0.9202 | 0.923 |
svm_lr_mnb_binary_char_(2, 3) | mean | 0.917 | 0.9171 | 0.9162 | 0.918 |
svm_lr_mnb_binary_char_(2, 3) | max | 0.9225 | 0.9231 | 0.9162 | 0.93 |
svm_lr_mnb_binary_char_(2, 3)_0.4 | max | 0.924 | 0.9247 | 0.9165 | 0.933 |
svm_lr_mnb_binary_char_(2, 3) | vote | 0.8985 | 0.8976 | 0.9054 | 0.89 |
svm_lr_mnb_binary_char_(2, 3) | gnb | 0.906 | 0.906 | 0.906 | 0.906 |
svm_lr_mnb_binary_char_(2, 3) | mnb | 0.918 | 0.9205 | 0.8936 | 0.949 |
svm_lr_mnb_binary_char_(2, 3)_0.54 | mnb | 0.92 | 0.9209 | 0.9101 | 0.932 |
svm_lr_mnb_binary_char_(2, 3)_0.56 | mnb | 0.922 | 0.9221 | 0.9212 | 0.923 |
all_dl_model | gnb | 0.9155 | 0.9161 | 0.9094 | 0.923 |
all_dl_model | mean | 0.9215 | 0.9207 | 0.9297 | 0.912 |
all_dl_model | max | 0.91 | 0.9090 | 0.9192 | 0.899 |
all_dl_model | vote | 0.9195 | 0.9185 | 0.9303 | 0.907 |
- simplified
model | acc | f1_mocro | f1_macro | f1_weighted |
---|---|---|---|---|
simplified_bilstm_word_w2v_data_tune | 0.812000 | 0.812000 | 0.811795 | 0.81179 |
simplified_mnb_binary_char_(2, 3) | 0.850500 | 0.850500 | 0.849895 | 0.849895 |
simplified_bilstm_mnb_mean_ensemble | 0.853500 | 0.853500 | 0.853031 | 0.853031 |
- traditional
model | acc | f1_mocro | f1_macro | f1_weighted |
---|---|---|---|---|
simplified_bilstm_word_w2v_data_tune | 0.845000 | 0.845000 | 0.844965 | 0.844965 |
simplified_mnb_binary_char_(2, 3) | 0.865500 | 0.865500 | 0.865022 | 0.865022 |
simplified_bilstm_mnb_mean_ensemble | 0.869000 | 0.869000 | 0.868710 | 0.868710 |