sauradip / suncet

Code to reproduce the results in the FAIR research papers "Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples" https://arxiv.org/abs/2104.13963 and "Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations" https://arxiv.org/abs/2006.10803

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples.

CD21_260_SWAV2_PAWS_Flowchart_FINAL

PAWS is a method for semi-supervised learning that builds on the principles of self-supervised distance-metric learning. PAWS pre-trains a model to minimize a consistency loss, which ensures that different views of the same unlabeled image are assigned similar pseudo-labels. The pseudo-labels are generated non-parametrically, by comparing the representations of the image views to those of a set of randomly sampled labeled images. The distance between the view representations and labeled representations is used to provide a weighting over class labels, which we interpret as a soft pseudo-label. By non-parametrically incorporating labeled samples in this way, PAWS extends the distance-metric loss used in self-supervised methods such as BYOL and SwAV to the semi-supervised setting.

Also provided in this repo is a PyTorch implementation of the semi-supervised SimCLR+CT method described in the paper Supervision Accelerates Pretraining in Contrastive Semi-Supervised Learning of Visual Representations. SimCLR+CT combines the SimCLR self-supervised loss with the SuNCEt (supervised noise contrastive estimation) loss for semi-supervised learning.

Pretrained models

We provide the full checkpoints for the PAWS pre-trained models, both with and without fine-tuning. The full checkpoints for the pretrained models contain the backbone, projection head, and prediction head weights. The finetuned model checkpoints, on the other hand, only include the backbone and linear classifier head weights. Top-1 classification accuracy for the pretrained models is reported using a nearest neighbour classifier. Top-1 classification accuracy for the finetuned models is reported using the class labels predicted by the network's last linear layer.

1% labels 10% labels
epochs network pretrained (NN) finetuned pretrained (NN) finetuned
300 RN50 64.2% 66.5% 73.1% 75.5%
200 RN50 63.2% 66.1% 71.9% 75.0%
100 RN50 61.5% 63.8% 71.0% 73.9%

Running PAWS semi-supervised pre-training and fine-tuning

Config files

All experiment parameters are specified in config files (as opposed to command-line-arguments). Config files make it easier to keep track of different experiments, as well as launch batches of jobs at a time. See the configs/ directory for example config files.

Requirements

  • Python 3.8
  • PyTorch install 1.7.1
  • torchvision
  • CUDA 11.0
  • Apex with CUDA extension
  • Other dependencies: PyYaml, numpy, opencv, submitit

Labeled Training Splits

For reproducibilty, we have pre-specified the labeled training images as .txt files in the imagenet_subsets/ and cifar10_subsets/ directories. Based on your specifications in your experiment's config file, our implementation will automatically use the images specified in one of these .txt files as the set of labeled images. On ImageNet, if you happen to request a split of the data that is not contained in imagenet_subsets/ (for example, if you set unlabeled_frac !=0.9 and unlabeled_frac != 0.99, i.e., not 10% labeled or 1% labeled settings), then the code will independently flip a coin at the start of training for each training image with probability 1-unlabeled_frac to determine whether or not to keep the image's label.

Single-GPU training

PAWS is very simple to implement and experiment with. Our implementation starts from the main.py, which parses the experiment config file and runs the desired script (e.g., paws pre-training or fine-tuning) locally on a single GPU.

CIFAR10 pre-training

For example, to pre-train with PAWS on CIFAR10 locally, using a single GPU using the pre-training experiment configs specificed inside configs/paws/cifar10_train.yaml, run:

python main.py
  --sel paws_train
  --fname configs/paws/cifar10_train.yaml

CIFAR10 evaluation

To fine-tune the pre-trained model for a few optimization steps with the SuNCEt (supervised noise contrastive estimation) loss on a single GPU using the pre-training experiment configs specificed inside configs/paws/cifar10_snn.yaml, run:

python main.py
  --sel snn_fine_tune
  --fname configs/paws/cifar10_snn.yaml

To then evaluate the nearest-neighbours performance of the model, locally, on a single GPU, run:

python snn_eval.py
  --model-name wide_resnet28w2
  --pretrained $path_to_pretrained_model
  --unlabeled_frac $1.-fraction_of_labeled_train_data_to_support_nearest_neighbour_classification
  --root-path $path_to_root_datasets_directory
  --image-folder $image_directory_inside_root_path
  --dataset-name cifar10_fine_tune
  --split-seed $which_prespecified_seed_to_split_labeled_data

CIFAR10 data setup

When setting up your CIFAR10 data, note the following relevant items in the config:

  • root_path is the datasets directory where you put all your data
  • image_folder is the folder inside root_path where cifar-10-batches-py exists (cifar-10-batches-py is the folder torchvision.CIFAR10 looks for)

Here is an example to setup your CIFAR10 data:

First download CIFAR10 and unzip; you will get a cifar-10-batches-py directory. Then create the following directory structure:

|- datasets/
|-- cifar10-data/
|---- cifar-10-batches-py/

Finally, in your config specify:

  • root_path: datasets/
  • image_folder: cifar10-data/

You should now be able to run CIFAR10 experiments.

Multi-GPU training

Running PAWS across multiple GPUs on a cluster is also very simple. In the multi-GPU setting, the implementation starts from main_distributed.py, which, in addition to parsing the config file and launching the desired script, also allows for specifying details about distributed training. For distributed training, we use the popular open-source submitit tool and provide examples for a SLURM cluster, but feel free to edit main_distributed.py for your purposes to specify a different approach to launching a multi-GPU job on a cluster.

ImageNet pre-training

For example, to pre-train with PAWS on 64 GPUs using the pre-training experiment configs specificed inside configs/paws/imgnt_train.yaml, run:

python main_distributed.py
  --sel paws_train
  --fname configs/paws/imgnt_train.yaml
  --partition $slurm_partition
  --nodes 8 --tasks-per-node 8
  --time 1000
  --device volta16gb

ImageNet fine-tuning

To fine-tune a pre-trained model on 4 GPUs using the fine-tuning experiment configs specified inside configs/paws/fine_tune.yaml, run:

python main_distributed.py
  --sel fine_tune
  --fname configs/paws/fine_tune.yaml
  --partition $slurm_partition
  --nodes 1 --tasks-per-node 4
  --time 1000
  --device volta16gb

To evaluate the fine-tuned model locally on a single GPU, use the same config file, configs/paws/fine_tune.yaml, but change training: true to training: false. Then run:

python main.py
  --sel fine_tune
  --fname configs/paws/fine_tune.yaml

Soft Nearest Neighbours evaluation

To evaluate the nearest-neighbours performance of a pre-trained ResNet50 model on a single GPU, run:

python snn_eval.py
  --model-name resnet50 --use-pred
  --pretrained $path_to_pretrained_model
  --unlabeled_frac $1.-fraction_of_labeled_train_data_to_support_nearest_neighbour_classification
  --root-path $path_to_root_datasets_directory
  --image-folder $image_directory_inside_root_path
  --dataset-name $one_of:[imagenet_fine_tune, cifar10_fine_tune]

License

See the LICENSE file for details about the license under which this code is made available.

Citation

If you find this repository useful in your research, please consider giving a star ⭐ and a citation 🐾

@article{assran2021semisupervised,
  title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
  author={Assran, Mahmoud, and Caron, Mathilde, and Misra, Ishan, and Bojanowski, Piotr and Joulin, Armand, and Ballas, Nicolas, and Rabbat, Michael},
  journal={arXiv preprint arXiv:2104.13963},
  year={2021}
}
@article{assran2020supervision,
  title={Supervision Accelerates Pretraining in Contrastive Semi-Supervised Learning of Visual Representations},
  author={Assran, Mahmoud, and Ballas, Nicolas, and Castrejon, Lluis, and Rabbat, Michael},
  journal={arXiv preprint arXiv:2006.10803},
  year={2020}
}

About

Code to reproduce the results in the FAIR research papers "Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples" https://arxiv.org/abs/2104.13963 and "Supervision Accelerates Pre-training in Contrastive Semi-Supervised Learning of Visual Representations" https://arxiv.org/abs/2006.10803

License:MIT License


Languages

Language:Python 100.0%