Rafael Padilla's repositories

Object-Detection-Metrics

Most popular metrics used to evaluate object detection algorithms.

Language:PythonLicense:MITStargazers:5077Issues:67Issues:150

review_object_detection_metrics

Object Detection Metrics. 14 object detection metrics: mean Average Precision (mAP), Average Recall (AR), Spatio-Temporal Tube Average Precision (STT-AP). This project supports different bounding box formats as in COCO, PASCAL, Imagenet, etc.

Language:PythonLicense:NOASSERTIONStargazers:1138Issues:17Issues:109
Language:Jupyter NotebookStargazers:20Issues:5Issues:0

DeepLearning-VDAO

Here are some of the results of my experiments applying Deep Learning for object detection.

TCF-LMO

TCF-LMO is a network made with dedicated modules to process videos and identify the presence of anomalies in frames. It is composed by: dissimilarity model; a differentiable morphology module; temporal consistency; and classification module.

Language:PythonStargazers:12Issues:3Issues:0
Language:PythonStargazers:7Issues:1Issues:0
Language:Jupyter NotebookStargazers:5Issues:0Issues:0

transformers

πŸ€— Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

Language:PythonLicense:Apache-2.0Stargazers:1Issues:0Issues:0

agents-course

This repository contains the Hugging Face Agents Course.

License:Apache-2.0Stargazers:0Issues:0Issues:0

autodistill

Images to inference with no labeling (use foundation models to train supervised models).

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

autodistill-gpt-4v

GPT-4V(ision) module for use with Autodistill.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

autodistill-yolov11

YOLOv11 Target Model plugin for Autodistill

Language:PythonLicense:AGPL-3.0Stargazers:0Issues:0Issues:0

blog

Public repo for HF blog posts

Language:Jupyter NotebookStargazers:0Issues:0Issues:0

circleci-demo-javascript-express

Sample Javascript/Express app building on CircleCI

Language:JavaScriptLicense:MITStargazers:0Issues:1Issues:0

datasets

πŸ€— The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

evaluate

πŸ€— Evaluate: A library for easily evaluating machine learning models and datasets.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

flask-school-app-and-api

Web app and REST API built with Flask

Language:JavaScriptStargazers:0Issues:0Issues:0

imagen-pytorch

Implementation of Imagen, Google's Text-to-Image Neural Network, in Pytorch

Language:PythonLicense:MITStargazers:0Issues:1Issues:0

langchain

πŸ¦œπŸ”— Build context-aware reasoning applications

Language:PythonLicense:MITStargazers:0Issues:0Issues:0
Language:Jupyter NotebookLicense:MITStargazers:0Issues:1Issues:0

nd9991-c2-Infrastructure-as-Code-v1

Repository for starter code and supporting material

Language:ShellStargazers:0Issues:1Issues:0

nd9991-c3-hello-world-exercise-solution

Hello world exercise from ND9991 C3 L4

Language:HTMLStargazers:0Issues:1Issues:0

notebooks

Notebooks using the Hugging Face libraries πŸ€—

Language:Jupyter NotebookLicense:Apache-2.0Stargazers:0Issues:0Issues:0
Language:PythonLicense:AGPL-3.0Stargazers:0Issues:0Issues:0

practicals-2023

Practical courses Khipu 2023

Language:Jupyter NotebookLicense:GPL-3.0Stargazers:0Issues:1Issues:0

react-slingshot

React + Redux starter kit / boilerplate with Babel, hot reloading, testing, linting and a working example app built in

Language:JavaScriptLicense:MITStargazers:0Issues:1Issues:0

scene_graph_benchmark

image scene graph generation benchmark

Language:PythonLicense:MITStargazers:0Issues:1Issues:0

supervision

We write your reusable computer vision tools. πŸ’œ

License:MITStargazers:0Issues:0Issues:0

videohash

Near Duplicate Video Detection (Perceptual Video Hashing) - Get a 64-bit comparable hash-value for any video.

License:MITStargazers:0Issues:0Issues:0