A Python simple multi-cohort LTV calculator library for subscription-based products.
pip install lucius-ltv
To use this library, the first step is to build a Cohort retention matrix for your product.
To build a cohort matrix:
- For each period of interest (week/month/year - depending on your subscription)
- Retrieve the number of users that started paying for the first time
- Track those users over time to observe how many where still alive in the following periods
- Stack them in order to obtain a pd.DataFrame resembling this:
2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 |
---|---|---|---|---|---|---|---|
100 | 95 | 82 | 78 | 75 | 71 | 68 | 63 |
120 | 109 | 99 | 87 | 80 | 67 | 66 | |
101 | 90 | 80 | 77 | 73 | 68 | ||
130 | 122 | 115 | 108 | 99 | |||
95 | 91 | 85 | 67 | ||||
102 | 90 | 81 | |||||
90 | 80 |
Alternatively if you are just trying out this library, you can generate a retention cohort matrix by calling generate_synthetic_cohort_matrix
. An example of this is contained in the sample file, sample.py
shipped with this project.
Once you have a cohort matrix, you can finally fit the sBG model that will predict LTV. Behind the scenes this library implements "Fader, Peter and Hardie, Bruce, How to Project Customer Retention (May 2006)" (Available at SSRN: https://ssrn.com/abstract=801145 or http://dx.doi.org/10.2139/ssrn.801145) using the powerful Bayesian Inference library pymc3.
To fit the pymc model, simply run:
inference_data, model = fit_sbg_model(
cohort_matrix,
periods=10, # Number of projected periods
)
If your product offers free trials or initial offers of any kind, you can add a conversion layer to the model, by specifying the starting users:
inference_data, model = fit_sbg_model(
cohort_matrix,
all_users=[150, 147, 180, 160, 130, 140, 160],
periods=10, # Number of projected periods
)
If you are testing the model with synthetic data you can specify the true alpha/beta sbg parameter values (those won't be used in fitting, but to generate reference/comparison timeseries)
inference_data, model = fit_sbg_model(
cohort_matrix,
periods=10, # Number of projected periods
true_a=1.5,
true_b=2.3,
)
If you want you can pass extra arguments that will be re-routed to the pymc sampler, like target_accept
, steps
, tune
, etc..
The returned inference_data
is a standard Arviz InferenceData object will contain a posterior estimate of the modelled variables as returned by pymc3.
The most interesting variables are:
inference_data.posterior['ltv']
the LTV timeseriesinference_data.posterior['conversion_rate_by_cohort']
the conversion rates if you did the fit withall_users
inference_data.posterior['ltv']
the true LTV timeseries if you provided true values of alpha and beta
Please note that these are trace objects resulting from the sampling process,
therefore each variable will have multiple possible values representing the sampling of the posterior distribution.
From this sampling you can obtain high-density intervals using np.percentile
or az.hdi
.
You can also compute the empirical LTV starting from the cohort matrix, allowing you to compare empirical LTV to the projected one.
empirical_ltv = compute_empirical_ltv(cohort_matrix=cohort_matrix)
The library also includes a few methods for quickly plotting results.
Plot the user lifetime value with surrounding HDI
fig, ax = plt.subplots(figsize=(20, 10))
plot_ltv(empirical_ltv, inference_data=inference_data, ax=ax)
fig.suptitle(f'Lifetime value')
ax.legend()
ax.grid()
Plot the conversion rate by cohort with sorrounding HDI
fig, ax = plt.subplots(figsize=(20, 10))
plot_conversion_rate(inference_data, ax=ax)
fig.suptitle(f'Conversion Rate')
ax.grid()
Plot the cohort matrix retention rates
plot_cohort_matrix_retention(cohort_matrix, 'Cohort Retention')
Plot the posterior distributions vs true values
fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(12, 12))
az.plot_posterior(inference_data, var_names=("alpha",),
ref_val=true_alpha,
ax=ax1)
az.plot_posterior(inference_data, var_names=("beta",),
ref_val=true_beta,
ax=ax2)
az.plot_posterior(inference_data, var_names=("conversion_rate",),
ref_val=1/true_conversion_rate,
ax=ax3)
fig.suptitle(f'True v Recovered values')