pintonos / xsDeepFwFM_deprecated

Accelerating Inference for Recommendation Systems

Home Page:https://arxiv.org/abs/2002.06987

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

DeepLight: Deep Lightweight Feature Interactions

Deploying the end-to-end deep factorization machines has a critical issue in prediction latency. To handle this issue, we study the acceleration of the prediction by conducting structural pruning for DeepFwFM, which ends up with 46X speed-ups without sacrifice of the state-of-the-art performance on Criteo dataset.

PWC

Please refer to the arXiv paper if you are interested in the details.

Original paper:

@inproceedings{deeplight,
  title={DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving},
  author={Wei Deng and Junwei Pan and Tian Zhou and Deguang Kong and Aaron Flores and Guang Lin},
  booktitle={International Conference on Web Search and Data Mining (WSDM'21)},
  year={2021}
}

In this repository additional model compression and acceleration will be conducted. All on the Twitter dataset given by the RecSys 2020 Challenge.

Environment

  1. Python 3.7

  2. PyTorch 1.7.1

  3. Pandas

  4. Sklearn

  5. https://github.com/TylerYep/torch-summary

Input Format

This implementation requires the input data in the following format:

  • Xi: [[ind1_1, ind1_2, ...], [ind2_1, ind2_2, ...], ..., [indi_1, indi_2, ..., indi_j, ...], ...]
    • indi_j is the feature index of feature field j of sample i in the dataset
  • Xv: [[val1_1, val1_2, ...], [val2_1, val2_2, ...], ..., [vali_1, vali_2, ..., vali_j, ...], ...]
    • vali_j is the feature value of feature field j of sample i in the dataset
    • vali_j can be either binary (1/0, for binary/categorical features) or float (e.g., 10.24, for numerical features)
  • y: target of each sample in the dataset (1/0 for classification, numeric number for regression)

How to run the dense models

The folder already has a tiny dataset to test. You can run the following models through

LR: logistic regression

$ python main_all.py -use_fm 0 -use_fwfm 0 -use_deep 0 -use_lw 0 -use_logit 1 > ./logs/all_logistic_regression

FM: factorization machine

$ python main_all.py -use_fm 1 -use_fwfm 0 -use_deep 0 -use_lw 0 > ./logs/all_fm_vanilla

FwFM: field weighted factorization machine

$ python main_all.py -use_fm 0 -use_fwfm 1 -use_deep 0 -use_lw 0 > ./logs/all_fwfm_vanilla

DeepFM: deep factorization machine

$ python main_all.py -use_fm 1 -use_fwfm 0 -use_deep 1 -use_lw 0 > ./logs/all_deepfm_vanilla

NFM: factorization machine

$ python NFM.py > ./logs/all_nfm

xDeepFM: extreme factorization machine

You may try the link here https://github.com/Leavingseason/xDeepFM

How to conduct structural pruning

The default code gives 0.8123 AUC if apply 90% sparsity on the DNN component and the field matrix R and apply 40% (90%x0.444) on the embeddings.

python main_all.py -l2 6e-7 -n_epochs 10 -warm 2 -prune 1 -sparse 0.90  -prune_deep 1 -prune_fm 1 -prune_r 1 -use_fwlw 1 -emb_r 0.444 -emb_corr 1. > ./logs/deepfwfm_l2_6e_7_prune_all_and_r_warm_2_sparse_0.90_emb_r_0.444_emb_corr_1

Useful python scripts

Using Twitter dataset

python main_all.py -use_fm 0 -use_fwfm 1 -use_deep 1 -use_lw 1 -use_fwlw 1 -use_cuda 1 -n_epochs 1 -dataset twitter -twitter_category like 

Pruning

python main_all.py -use_fm 0 -use_fwfm 1 -use_deep 1 -use_lw 1 -n_epochs 10 -dataset tiny-criteo -use_cuda 1 -prune 1 -l2 6e-7 -warm 2 -sparse 0.9 -prune_deep 1 -prune_fm 1 -prune_r 1 -use_fwlw 1 -emb_r 0.444 -emb_corr 1.

QR Embeddings

python main_all.py -use_fm 0 -use_fwfm 1 -use_deep 1 -use_lw 1 -use_fwlw 1 -use_cuda 1 -n_epochs 3 -dataset criteo -embedding_bag 1 -qr_flag 1

Quantization for sparse models

python quantization.py -use_deep 1 -use_fwfm 1 -n_epochs 3 -prune 1 -sparse 0.90 -use_fwlw 1 -save_model_path ./saved_models/full_pruned_DeepFwFM_l2_6e-07_sparse_0.9_seed_0 -dynamic_quantization 0 -quantization_aware 0 -static_quantization 1

Quantization for QR Embeddings

python quantization.py -use_deep 1 -use_fwfm 1 -use_lw 1 -use_fwlw 1 -n_epochs 3 -save_model_path ./saved_models/full_DeepFwFM_l2_3e-07_qr -dynamic_quantization 0 -quantization_aware 0 -static_quantization 1 -embedding_bag 1 -qr_flag 1

Preprocess full Twitter dataset

To download the full dataset, you can use the link below https://recsys-twitter.com/

For preprocessing use this repository: https://github.com/pintonos/deeplearning/tree/main/RecSys2020/01_Preprocess

It contains preprocessing according to the RecSys2020 winner features by RapidsAI.

Move the preprocessed files to the ./data/large folder

Move to the data folder and process the raw data.

$ python preprocess_twitter.py

Preprocess full Criteo dataset

The Criteo dataset has 2-class labels with 22 categorical features and 11 numerical features.

To download the full dataset, you can use the link below http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/

Unzip the raw data and save it in ./data/large folder:

tar xvzf dac.tar.gz

Move to the data folder and process the raw data.

$ python preprocess_criteo.py

When the dataset is ready, you need to change the files in main_all.py as follows

#result_dict = data_preprocess.read_data('./data/tiny_train_input.csv', './data/category_emb', criteo_num_feat_dim, feature_dim_start=0, dim=39)
#test_dict = data_preprocess.read_data('./data/tiny_test_input.csv', './data/category_emb', criteo_num_feat_dim, feature_dim_start=0, dim=39)
result_dict = data_preprocess.read_data('./data/large/train.csv', './data/large/criteo_feature_map', criteo_num_feat_dim, feature_dim_start=1, dim=39)
test_dict = data_preprocess.read_data('./data/large/valid.csv', './data/large/criteo_feature_map', criteo_num_feat_dim, feature_dim_start=1, dim=39)

How to analyze the prediction latency

You need to download this repo: https://github.com/uestla/Sparse-Matrix before you start.

After the setup, you can change the directory in line-23 of the cpp file to your local dir.

cd latency
g++ criteo_latency.cpp  -o criteo.out

To avoid setting the environment, you can also consider to test the compiled file directly.

./criteo.out

Acknowledgement

https://github.com/nzc/dnn_ctr

About

Accelerating Inference for Recommendation Systems

https://arxiv.org/abs/2002.06987


Languages

Language:Python 92.2%Language:C++ 7.8%