pialim / edmr

Optimized DMR analysis based on bimodal normal distribution model and cost function for regional methylation analysis.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

edmr

Optimized DMR analysis based on bimodal normal distribution model and cost function for regional methylation analysis.

Citing edmr

Li S, Garrett-Bakelman FE, Akalin A, Zumbo P, Levine R, To BL, Lewis ID, Brown AL, D'Andrea RJ, Melnick A, Mason CE. An optimized algorithm for detecting and annotating regional differential methylation. BMC Bioinformatics. 2013;14 Suppl 5:S10.

Installation

install.packages( c("data.table", "mixtools", "devtools"))
source("http://bioconductor.org/biocLite.R")
biocLite(c("GenomicRanges","IRanges"))
# install from github
library(devtools)
install_github("edmr", username = "ShengLi",build_vignettes=FALSE)

Usage

Step 1. Load add-on packages and example data

library(edmr)
library(GenomicRanges)
library(IRanges)
library(mixtools)
library(data.table)
data(edmr)

Step 2. myDiff evalution and plotting

# fitting the bimodal normal distribution to CpGs distribution
myMixmdl=myDiff.to.mixmdl(myDiff, plot=T, main="example")

# plot cost function and the determined distance cutoff
plotCost(myMixmdl, main="cost function")

alt tag alt tag

Step 3. Calculate DMRs

# calculate all DMRs candidate
mydmr=edmr(myDiff, mode=1, ACF=TRUE)

# further filtering the DMRs
mysigdmr=filter.dmr(mydmr)

## annotation
# get genebody annotation GRangesList object
#genebody=genebody.anno(file="http://edmr.googlecode.com/files/hg19_refseq_all_types.bed")
genebody.file=system.file("extdata", "chr22.hg19_refseq_all_types.bed.gz", package = "edmr")
genebody=genebody.anno(file=genebody.file)

# plot the eDMR genebody annotation
plotdmrdistr(mysigdmr, genebody)

# get CpG islands and shores annotation
#cpgi=cpgi.anno(file="http://edmr.googlecode.com/files/hg19_cpgisland_all.bed")
cpgi.file=system.file("extdata", "chr22.hg19_cpgisland_all.bed.gz", package = "edmr")
cpgi=cpgi.anno(file=cpgi.file)

# plot the eDMR CpG islands and shores annotation
plotdmrdistr(mysigdmr, cpgi)

# prepare genes for pathway analysis with significant DMRs at its promoter regions 
dmr.genes=get.dmr.genes(myDMR=mysigdmr, subject=genebody$promoter, id.type="gene.symbol")
dmr.genes

alt tag alt tag

About

Optimized DMR analysis based on bimodal normal distribution model and cost function for regional methylation analysis.


Languages

Language:R 100.0%