parasj / image-segmentation-keras

Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Home Page:https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras.

PyPI version Say Thanks! GPLv3 license

Implementation of various Deep Image Segmentation models in keras.

Link to the full blog post with tutorial : https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html

Our Other Repositories

Contributors

Divam Gupta : https://divamgupta.com

Models

Following models are supported:

model_name Base Model Segmentation Model
fcn_8 Vanilla CNN FCN8
fcn_32 Vanilla CNN FCN8
fcn_8_vgg VGG 16 FCN8
fcn_32_vgg VGG 16 FCN32
fcn_8_resnet50 Resnet-50 FCN32
fcn_32_resnet50 Resnet-50 FCN32
fcn_8_mobilenet MobileNet FCN32
fcn_32_mobilenet MobileNet FCN32
pspnet Vanilla CNN PSPNet
vgg_pspnet VGG 16 PSPNet
resnet50_pspnet Resnet-50 PSPNet
unet_mini Vanilla Mini CNN U-Net
unet Vanilla CNN U-Net
vgg_unet VGG 16 U-Net
resnet50_unet Resnet-50 U-Net
mobilenet_unet MobileNet U-Net
segnet Vanilla CNN Segnet
vgg_segnet VGG 16 Segnet
resnet50_segnet Resnet-50 Segnet
mobilenet_segnet MobileNet Segnet

Example results for the pre-trained models provided :

Input Image Output Segmentation Image

Getting Started

Prerequisites

  • Keras 2.0
  • opencv for python
  • Theano / Tensorflow / CNTK
sudo apt-get install python-opencv
sudo pip install --upgrade keras

Installing

Install the module

pip install keras-segmentation

or

git clone https://github.com/divamgupta/image-segmentation-keras
cd image-segmentation-keras
python setup.py install

pip install will be available soon!

Pre-trained models:

import keras_segmentation

model = keras_segmentation.pretrained.pspnet_50_ADE_20K() # load the pretrained model trained on ADE20k dataset

model = keras_segmentation.pretrained.pspnet_101_cityscapes() # load the pretrained model trained on Cityscapes dataset

model = keras_segmentation.pretrained.pspnet_101_voc12() # load the pretrained model trained on Pascal VOC 2012 dataset

# load any of the 3 pretrained models

out = model.predict_segmentation(
    inp="input_image.jpg",
    out_fname="out.png"
)

Preparing the data for training

You need to make two folders

  • Images Folder - For all the training images
  • Annotations Folder - For the corresponding ground truth segmentation images

The filenames of the annotation images should be same as the filenames of the RGB images.

The size of the annotation image for the corresponding RGB image should be same.

For each pixel in the RGB image, the class label of that pixel in the annotation image would be the value of the blue pixel.

Example code to generate annotation images :

import cv2
import numpy as np

ann_img = np.zeros((30,30,3)).astype('uint8')
ann_img[ 3 , 4 ] = 1 # this would set the label of pixel 3,4 as 1

cv2.imwrite( "ann_1.png" ,ann_img )

Only use bmp or png format for the annotation images.

Download the sample prepared dataset

Download and extract the following:

https://drive.google.com/file/d/0B0d9ZiqAgFkiOHR1NTJhWVJMNEU/view?usp=sharing

You will get a folder named dataset1/

Using the python module

You can import keras_segmentation in your python script and use the API

import keras_segmentation

model = keras_segmentation.models.unet.vgg_unet(n_classes=51 ,  input_height=416, input_width=608  )

model.train( 
    train_images =  "dataset1/images_prepped_train/",
    train_annotations = "dataset1/annotations_prepped_train/",
    checkpoints_path = "/tmp/vgg_unet_1" , epochs=5
)

out = model.predict_segmentation(
    inp="dataset1/images_prepped_test/0016E5_07965.png",
    out_fname="/tmp/out.png"
)


import matplotlib.pyplot as plt
plt.imshow(out)

Usage via command line

You can also use the tool just using command line

Visualizing the prepared data

You can also visualize your prepared annotations for verification of the prepared data.

python -m keras_segmentation verify_dataset \
 --images_path="dataset1/images_prepped_train/" \
 --segs_path="dataset1/annotations_prepped_train/"  \
 --n_classes=50
python -m keras_segmentation visualize_dataset \
 --images_path="dataset1/images_prepped_train/" \
 --segs_path="dataset1/annotations_prepped_train/"  \
 --n_classes=50

Training the Model

To train the model run the following command:

python -m keras_segmentation train \
 --checkpoints_path="path_to_checkpoints" \
 --train_images="dataset1/images_prepped_train/" \
 --train_annotations="dataset1/annotations_prepped_train/" \
 --val_images="dataset1/images_prepped_test/" \
 --val_annotations="dataset1/annotations_prepped_test/" \
 --n_classes=50 \
 --input_height=320 \
 --input_width=640 \
 --model_name="vgg_unet"

Choose model_name from the table above

Getting the predictions

To get the predictions of a trained model

python -m keras_segmentation predict \
 --checkpoints_path="path_to_checkpoints" \
 --input_path="dataset1/images_prepped_test/" \
 --output_path="path_to_predictions"

Fine-tuning from existing segmentation model

The following example shows how to fine-tune a model with 10 classes .

import keras_segmentation
from keras_segmentation.models.model_utils import transfer_weights


pretrained_model = keras_segmentation.pretrained.pspnet_50_ADE_20K() 

new_model = keras_segmentation.models.pspnet.pspnet_50( n_classes=51 )

transfer_weights( pretrained_model , new_model  ) # transfer weights from pre-trained model to your model

new_model.train( 
    train_images =  "dataset1/images_prepped_train/",
    train_annotations = "dataset1/annotations_prepped_train/",
    checkpoints_path = "/tmp/vgg_unet_1" , epochs=5
)

About

Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html

License:GNU General Public License v3.0


Languages

Language:Python 98.3%Language:Shell 1.7%