paran's starred repositories
gpt_academic
为GPT/GLM等LLM大语言模型提供实用化交互接口,特别优化论文阅读/润色/写作体验,模块化设计,支持自定义快捷按钮&函数插件,支持Python和C++等项目剖析&自译解功能,PDF/LaTex论文翻译&总结功能,支持并行问询多种LLM模型,支持chatglm3等本地模型。接入通义千问, deepseekcoder, 讯飞星火, 文心一言, llama2, rwkv, claude2, moss等。
Speech-Emotion-Recognition
Speech emotion recognition implemented in Keras (LSTM, CNN, SVM, MLP) | 语音情感识别
Brain-Cog
Brain-inspired Cognitive Intelligence Engine (BrainCog) is a brain-inspired spiking neural network based platform for Brain-inspired Artificial Intelligence and simulating brains at multiple scales. The long term goal of BrainCog is to provide a comprehensive theory and system to decode the mechanisms and principles of human intelligence and its evolution, and develop artificial brains for brain-inspired conscious living AI in future Human-AI symbiotic Society.
multimodal-speech-emotion-recognition
Lightweight and Interpretable ML Model for Speech Emotion Recognition and Ambiguity Resolution (trained on IEMOCAP dataset)
sEMG_DeepLearning
sEMG-based gesture recognition using deep learnig
ecg-mit-bih
ECG classification using MIT-BIH data, a deep CNN learning implementation of Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, https://www.nature.com/articles/s41591-018-0268-3 and also deploy the trained model to a web app using Flask, introduced at
VIB-pytorch
Pytorch implementation of Deep Variational Information Bottleneck
Ninapro-dataset-processing
The processing flow of Ninapro datasets and the pytorch dataloader of the processed Ninapro data.
2OIB-for-sEMG-Recognition
Second-order information bottleneck for sEMG pattern recognition tasks
popane-2021
POPANE DATASET - Psychophysiology Of Positive And Negative Emotions - supplemental materials
divide_NinaPro_database_5
This repository contain the code we used to divide NinaPro database 5 into train set and test set
Plasticity_Driven_Learning_Framework
Code for Metaplasticity: Unifying Learning and Homeostatic Plasticity in Spiking Neural Networks
SpeechEmotionRecognition
这个项目将 RAVDESS 数据集切割成 1s 短语音,利用 openSMILE+CNN 进行训练,目标是将短语音分类到四种情感中,分别是:开心(happy)、悲伤(sad)、生气(angry)和中性(neutral)。最后准确率达到 76% 左右。