PyStan: The Python Interface to Stan
PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.
For more information on Stan and its modeling language, see the Stan User's Guide and Reference Manual at http://mc-stan.org/.
Important links
- HTML documentation: https://pystan.readthedocs.org
- Issue tracker: https://github.com/stan-dev/pystan/issues
- Source code repository: https://github.com/stan-dev/pystan
- Stan: http://mc-stan.org/
- Stan User's Guide and Reference Manual (pdf) available at http://mc-stan.org
Related projects
- Scikit-learn integration: pystan-sklearn by @rgerkin.
Similar projects
Detailed Installation Instructions
Detailed installation instructions can be found in the doc/installation_beginner.md file.
Quick Installation (Linux and macOS)
NumPy and Cython (version 0.22 or greater) are required. matplotlib is optional.
PyStan and the required packages may be installed from the Python Package Index using pip
.
pip install pystan
Alternatively, if Cython (version 0.22 or greater) and NumPy are already available, PyStan may be installed from source with the following commands
git clone --recursive https://github.com/stan-dev/pystan.git cd pystan python setup.py install
If you encounter an ImportError
after compiling from source, try changing
out of the source directory before attempting import pystan
. On Linux and
OS X cd /tmp
will work.
Example
import pystan import numpy as np import matplotlib.pyplot as plt schools_code = """ data { int<lower=0> J; // number of schools real y[J]; // estimated treatment effects real<lower=0> sigma[J]; // s.e. of effect estimates } parameters { real mu; real<lower=0> tau; real eta[J]; } transformed parameters { real theta[J]; for (j in 1:J) theta[j] = mu + tau * eta[j]; } model { eta ~ normal(0, 1); y ~ normal(theta, sigma); } """ schools_dat = {'J': 8, 'y': [28, 8, -3, 7, -1, 1, 18, 12], 'sigma': [15, 10, 16, 11, 9, 11, 10, 18]} sm = pystan.StanModel(model_code=schools_code) fit = sm.sampling(data=schools_dat, iter=1000, chains=4) print(fit) eta = fit.extract(permuted=True)['eta'] np.mean(eta, axis=0) # if matplotlib is installed (optional, not required), a visual summary and # traceplot are available fit.plot() plt.show()