omo03 / VAE_NBP

Variational Auto-encoder with Non-parametric Bayesian Prior

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

VAE_NBP

Variational Auto-encoder with Non-parametric Bayesian Prior

Instruction:

   use vae_*.py to train the model.

For test and analysis you can use DPVAE.r. 

Examples:

source('DPVAE.r')

init('model')

z=sample(10)

image(display(z)[1,,])

image(display(z)[2,,])

image(display(z)[3,,])

image(display(z)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

image(display(z)[8,,])

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

z2=reconstruct(z)

image(display(z2)[8,,])

About

Variational Auto-encoder with Non-parametric Bayesian Prior

License:MIT License


Languages

Language:Python 85.6%Language:R 14.4%