nipunbatra / gpu-benchmark-suite

Repository from Github https://github.comnipunbatra/gpu-benchmark-suiteRepository from Github https://github.comnipunbatra/gpu-benchmark-suite

GPU Benchmark Suite

This suite benchmarks:

  • LLM Inference (HuggingFace Transformers — OPT 1.3B)
  • Object Detection (YOLOv8n)
  • Image Classification (ResNet50)
  • 🟡 GPU Burn (optional stress test)

Each benchmark reports:

  • First run (cold start) latency and throughput
  • Steady-state throughput (tokens/sec, FPS, images/sec)
  • Results saved to a single clean YAML file: results/final.yaml

✅ Setup

sudo apt update
sudo apt install -y docker.io nvidia-container-toolkit
sudo systemctl restart docker

Verify GPU Access

docker run --rm --gpus all nvidia/cuda:12.2.0-base nvidia-smi

Build the Docker Image

git clone https://github.com/nipunbatra/gpu-benchmark-suite
cd gpu-benchmark-suite
docker build -t gpu-bench -f docker/Dockerfile .

Run the Benchmarks

bash benchmarks/run_all_benchmarks.sh

Example Output

LLM:
  Generated_Tokens: 512
  First_Run_Sec: 12.43
  First_Tokens_per_Sec: 41.18
  Steady_Avg_Sec: 7.34
  Steady_Tokens_per_Sec: 69.78
Detection:
  Images_Processed: 100
  First_Run_Sec: 0.48
  Steady_Total_Sec: 2.91
  Steady_FPS: 34.36
Classification:
  Batch_Size: 32
  Batches_Processed: 100
  First_Batch_Sec: 0.025
  Steady_Total_Sec: 2.55
  Avg_Batch_Sec: 0.0255
  Images_per_Sec: 1254.90

About


Languages

Language:Python 75.3%Language:Shell 19.5%Language:Dockerfile 5.2%