miodeqqq / scientific-parsers

Python implementation of using Grobid and Tika.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

SCIENTIFIC TOOLS - USAGE OF GROBID & TIKA

Current stable version: v1.0 Release date: 03.12.2016

Author:

About:

GROBID - machine learning framework to parse PDF files and to extract information such as title, abstract, authors, affiliations, keywords, etc, from journal publications.

TIKA - toolkit detects and extracts metadata and text from over a thousand different file types (such as PPT, XLS, and PDF).

Requirements:

  • Python 3.x;
  • requests;
  • Grobid;
  • Tika;

Installing Grobid & Tika (docker):

Grobid

docker pull lfoppiano/grobid:0.4.1
docker run -t --rm -p 1234:8080 lfoppiano/grobid:0.4.1

Tika

docker pull logicalspark/docker-tikaserver
docker run -d -p 9876:9998 logicalspark/docker-tikaserver

Usage:

  • send PDFs to Grobid:
./pdf_to_grobid.py pdfs_data_directory grobid_output_data_directory grobid

where grobid is url for Grobid's requests, defined in utils as:

    'grobid': 'http://localhost:1234/processFulltextDocument',
  • send PDFs to Tika:
./pdf_to_tika.py pdfs_data_directory tika_output_data_directory tika

where tika is url for Tika's requests, defined in utils as:

    'tika': 'http://localhost:9876/tika',

About

Python implementation of using Grobid and Tika.


Languages

Language:Python 100.0%