First, download dataset celebA and MNIST:
$ python download.py mnist celebA
Then, to test image inpainting with celebA, run:
$ python complete.py --outDir outputImages --num 16 --batch_size 16 --nIter 1000 --imgs './data/celebA/*' --dataset celebA --maskType 'center'
The number of images, the size of batch, the number of iterations and and type of mask can be changed.
This code supports 5 masks: random, center, eye, left, crop
The completed images without Poisson Blending are stored in ./outputImages/completed/
The completed images with Poisson Blending are stored in ./outputImages/completed_blend/
The images sampled from DCGAN are stored in ./outputImages/hats_imgs/
To test image inpainting with MNIST, run:
$ python complete.py --outDir outputImages --num 16 --batch_size 16 --nIter 1000 --imgs './data/mnist/*' --dataset mnist --maskType 'center'
For MNIST, Poisson Blending is not applied.