mikigom

mikigom

Geek Repo

Company:SI Analytics

Location:Daejeon, South Korea

Home Page:https://mikigom.github.io/about/

Github PK Tool:Github PK Tool

mikigom's repositories

Awesome-Deep-Colorization

Selected Paper List of Deep Model based Image Colorization

gSLICrPy

Python3 Wrapper for "gSLICr: SLIC superpixels at over 250Hz"

Language:C++License:NOASSERTIONStargazers:23Issues:2Issues:3

DNPL-PyTorch

Official Code for "On the Power of Deep but Naive Partial Label Learning" (ICASSP 21)

Kernel-Modeling-Super-Resolution

Official Implementation for Kernel Modeling Super-Resolution on Real Low-Resolution Images

Language:MATLABStargazers:1Issues:1Issues:0

ACDRNet

Official PyTorch implementation of "End to End Trainable Active Contours via Differentiable Rendering"

Language:PythonLicense:Apache-2.0Stargazers:0Issues:1Issues:0

Clustering-Codes

This repository contains codes for performing some clustering techniques including KMeans and Sparse Subspace Clustering

Language:Jupyter NotebookStargazers:0Issues:1Issues:0

CMC

Contrastive Multiview Coding (self-supervised learning from multiple sensors/views/modalities)

Language:PythonStargazers:0Issues:2Issues:0

code-for-blog

Code samples from my blog

Language:PythonLicense:UnlicenseStargazers:0Issues:1Issues:0

CoModGAN-StyleGANv2

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

DCSR

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

Language:PythonStargazers:0Issues:1Issues:0

dual-hrnet

Dual-HRNet

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

EDSR-PyTorch

PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

Language:PythonLicense:MITStargazers:0Issues:2Issues:0

GPND

Generative Probabilistic Novelty Detection with Adversarial Autoencoders

Language:PythonStargazers:0Issues:0Issues:0

graph-cut-ransac

The Graph-Cut RANSAC algorithm proposed in paper: Daniel Barath and Jiri Matas; Graph-Cut RANSAC, Conference on Computer Vision and Pattern Recognition, 2018. It is available at http://openaccess.thecvf.com/content_cvpr_2018/papers/Barath_Graph-Cut_RANSAC_CVPR_2018_paper.pdf

License:NOASSERTIONStargazers:0Issues:0Issues:0

irn

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Language:PythonLicense:MITStargazers:0Issues:2Issues:0

lsun

LSUN Dataset Documentation and Demo Code

Language:PythonStargazers:0Issues:1Issues:0
Language:SCSSLicense:MITStargazers:0Issues:0Issues:0

mmediting

OpenMMLab Image and Video Editing Toolbox

Language:PythonLicense:Apache-2.0Stargazers:0Issues:1Issues:0

mmgeneration

MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:1Issues:0

mmsegmentation

OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

over9000

Over9000 optimizer

Language:Jupyter NotebookStargazers:0Issues:1Issues:0

pre-training

Pre-Training Buys Better Robustness and Uncertainty Estimates (ICML 2019)

Language:PythonLicense:Apache-2.0Stargazers:0Issues:2Issues:0

pytorch-balanced-batch

A pytorch dataset sampler for always sampling balanced batches.

Language:PythonLicense:GPL-3.0Stargazers:0Issues:1Issues:0

pytorch-gpu-benchmark

Using the famous cnn model in Pytorch, we run benchmarks on various gpu.

License:MITStargazers:0Issues:0Issues:0

pytorch-optimizer

torch-optimizer -- collection of optimizers for Pytorch

Language:PythonLicense:Apache-2.0Stargazers:0Issues:2Issues:0

RAdam

On The Variance Of The Adaptive Learning Rate And Beyond

Language:PythonLicense:Apache-2.0Stargazers:0Issues:2Issues:0

speechbrain

A PyTorch-based Speech Toolkit

License:Apache-2.0Stargazers:0Issues:0Issues:0

ss-ood

Self-Supervised Learning for OOD Detection

Language:PythonLicense:MITStargazers:0Issues:2Issues:0

STEGO

Unsupervised Semantic Segmentation by Distilling Feature Correspondences

Language:Jupyter NotebookLicense:MITStargazers:0Issues:0Issues:0

YOPO-You-Only-Propagate-Once

Code for our nips19 paper: You Only Propagate Once: Accelerating Adversarial Training Via Maximal Principle

Stargazers:0Issues:0Issues:0