longcongduoi / Indoor-navigation-algorithms

Strongly accurate indoor positioning algorithms with the main focus on indoor navigation developed by Navigine company. Here we will step by step publish the source code of our algorithm starting with trilateration.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Indoor-navigation-algorithms

  • extlibs/ - the source code of third-party libraries on which NavigineSDK depends

  • src/ - the source code of Navigine positioning algorithms

  • test/ - test and utilities to check the code source quality

Creating Navigation Client

Create variables first, which will store your data.

    /*
    ..
        Create variables, which will hold your location elements
    ..
    */ 
    navigine::navigation_core::GeoLevel geoLevel;
    std::shared_ptr<navigine::navigation_core::LevelCollector> levelCollector;
    navigine::navigation_core::NavigationSettings navigationSettings;
    std::shared_ptr<navigine::navigation_core::NavigationClient> navClient;

Add transmitters(Beacon, Eddystone, WIFI, WIFI-RTT, etc.) as GeoTransmitters from your location (then they will be converted to XYTransmitters for internal evaluations)

Parameters:
    - id - identifier of transmitter like (major,minor,uuid) for beacon, (namespaceId,instanceId) for eddystone, mac for WIFI;
    - point - latitude and longitude as GeoPoint;
    - pathlossModel - A, B and power of transmitter as `PathlossModel` struct variable;
    - type - type of transmitter, like Beacon, Eddystone, WIFI, WIFI-RTT, etc..
    /*
    ..
        Inside for loop add all the transmitters from your location
        Here is the example of adding one element
    ..
    */
    geoLevel.transmitters.emplace_back(transmitterId,
                              navigine::navigation_core::GeoPoint(latitude, longitude),
                              navigine::navigation_core::PathlossModel{A, B, power},
                              navigine::navigation_core::TransmitterType::BEACON);

Create geometry of the level using method getGeometry from barriers_geometry_builder.h file. Geometry could be created using the barriers and the size of the level

Parameters:
    - barrierList - list of polygons, where each polygon describes the barrier of the level;
    - allowedArea - polygon, which created using width and height of the map;
    // create the list of Polygons which will describe all the barriers
    // example from navigate.cpp in Android repository
    std::list<navigine::navigation_core::Polygon> barriersList;
    for (size_t i = 0; i < barriers.size(); ++i)
    {
        auto coords = barriers.at(i);
        navigine::navigation_core::Polygon barrier;
        for (const auto& coord : coords)
            boost::geometry::append(barrier, navigine::navigation_core::Point(coord.first, coord.second));

        barriersList.push_back(barrier);
    }

    // create the polygon of allowed area
    // example from navigate.cpp in Android repository
    navigine::navigation_core::Polygon levelArea;
    auto boundingBox = navigation_core::Box(navigation_core::Point(leftMin.latitude, leftMin.longitude), navigation_core::Point(rightMax.latitude, rightMax.longitude));
    boost::geometry::convert(boundingBox, allowedArea);

    geoLevel.geometry = navigine::navigation_core::getGeometry(barriersList, levelArea);

Create LevelCollector using method createLevelCollector and add all your geo levels.

    levelCollector = navigine::navigation_core::createLevelCollector();
    levelCollector->addGeoLevel(geoLevel);

Create NavigationSettings, with two parameters - level settings and common settings. (You can find them in navigation.xml i.e.)

Create NavigationClient using method createNavigationClient which will take as arguments level collector and navigation settings.

    navClient = navigine::navigation_core::createNavigationClient(levleCollector, navigationSettings);

Evaluate the navigation

Will be added.

About

Strongly accurate indoor positioning algorithms with the main focus on indoor navigation developed by Navigine company. Here we will step by step publish the source code of our algorithm starting with trilateration.


Languages

Language:C++ 96.4%Language:CMake 1.7%Language:Makefile 1.1%Language:Python 0.5%Language:QMake 0.3%