lmm6895071 / Generalization-Causality

一些domain generalization相关的阅读笔记

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

domain generalization, OOD以及causality相关问题的前沿文章阅读清单,链接为笔记,没有链接就是还没看,欢迎大家commit

Generalization/OOD

2021

  1. Arxiv: Towards a Theoretical Framework of Out-of-Distribution Generalization (新理论)
  2. Arxiv(Yoshua Bengio) Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization (当OOD遇到信息瓶颈理论)
  3. Arxiv Generalization of Reinforcement Learning with Policy-Aware Adversarial Data Augmentation
  4. Arxiv Embracing the Dark Knowledge: Domain Generalization Using Regularized Knowledge Distillation(使用知识蒸馏作为正则化手段)
  5. Arxiv Delving Deep into the Generalization of Vision Transformers under Distribution Shifts (视觉transformer的泛化性讨论)
  6. Arxiv Training Data Subset Selection for Regression with Controlled Generalization Error (从大量训练实例中选择数据子集,并保持可比的泛化性)
  7. Arxiv(MIT) Measuring Generalization with Optimal Transport (网络复杂度与泛化性的理论研究,)
  8. Arxiv(SJTU) OoD-Bench: Benchmarking and Understanding Out-of-Distribution Generalization Datasets and Algorithms (揭示OOD的评测标准尚不完善并提出评测方案)
  9. Arxiv (Tsinghu) Domain-Irrelevant Representation Learning for Unsupervised Domain Generalization (新的task:无监督的DG,源域的数据标签不可以用)
  10. ICML Oral: Can Subnetwork Structure be the Key to Out-of-Distribution Generalization? (彩票模型寻找模型中泛化能力更强的小模型)
  11. ICML Oral:Domain Generalization using Causal Matching (contrastive loss特征对齐+特征不变性约束)
  12. ICML Oral: Just Train Twice: Improving Group Robustness without Training Group Information
  13. ICML Spotlight: Environment Inference for Invariant Learning (没有域标签如何学习域不变性特征?)
  14. ICLR Poster: Understanding the failure modes of out-of-distribution generalization (OOD失败的两种原因)
  15. ICLR Poster: An Empirical Study of Invariant Risk Minimization(对IRM的实验性探索,如可见域的diversity如何影响IRM性能等)
  16. ICLR Poster In Search of Lost Domain Generalization (没有model selection的方法不是好方法,如何根据验证集选择模型?)
  17. ICLR Poster Modeling the Second Player in Distributionally Robust Optimization(用对抗学习建模DRO的uncertainty set)
  18. ICLR Poster Learning perturbation sets for robust machine learning(使用生成模型学习扰动集合)
  19. ICLR Spotlight(Yoshua Bengio) Systematic generalisation with group invariant predictions (将每个类分成不同的domain(environment inference,然后约束每个域的特征尽可能一致从而避免虚假依赖))
  20. CVPR Oral: Reducing Domain Gap by Reducing Style Bias (channel-wise 均值作为图像风格,减少CNN对风格的依赖)
  21. AISTATS Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions
  22. AISTATS Oral Does Invariant Risk Minimization Capture Invariance(IRM只有在满足特定条件的情况下才能真正捕捉不变形特征)

2020

  1. Arxiv I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models(将Domain Adaptation看作是因果图推理问题)
  2. Arxiv (Stanford)Distributionally Robust Lossesfor Latent Covariate Mixtures.
  3. NeurIPS Energy-based Out-of-distribution Detection(使用能量模型检测OOD样本)
  4. NeurIPS Fairness without demographics through adversarially reweighted learning (利用对抗学习对难样本进行加权,希望加权后的样本使得分类器的损失更大)
  5. NeurIPS Self-training Avoids Using Spurious Features Under Domain Shift (使用target domain的无标签数据训练有助于避免使用虚假特征)
  6. NeurIPS What shapes feature representations? Exploring datasets, architectures, and training(Simplicity Bias,神经网络倾向于拟合“容易”的特征)
  7. Arxiv Invariant Risk Minimization (奠基之作,跳出经验风险最小化--不变风险最小化)
  8. ICLR Poster The Risks of Invariant Risk Minimization (不变风险最小化的缺陷:域数目过少IRM即失败)
  9. ICLR Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization(GroupDRO: 拥有强正则的DRO)
  10. ICML An investigation of why overparameterizationexacerbates spurious correlations(神经网络的过参数化是造成网络使用虚假相关性的重要原因)
  11. ICML UDA workshop Learning Robust Representations with Score Invariant Learning(非归一化统计模型:用能量学习的方式做OOD)

OLD but Important

  1. ICML 2018 Oral (Stanford) Fairness Without Demographics in Repeated Loss Minimization.
  2. ICCV 2017 CCSA--Unified Deep Supervised Domain Adaptation and Generalization (对比损失对齐源域目标域样本空间)
  3. Domain Adaptation基础概念与相关文章解读

Robutness/Adaptation

2021

  1. ICLR Poster Learning perturbation sets for robust machine learning(使用生成模型学习扰动集合)
  2. ICCV Generalized Source-free Domain Adaptation(不使用源域数据,只有源域预训练的模型时如何adaptation并保证source domain的性能)

Old but Important

  1. Available at Optimization Online Kullback-Leibler Divergence Constrained Distributionally Robust Optimization(开篇之作,使用KL散度构造DRO中的uncertainty set)
  2. ICLR 2018 Oral Certifying Some Distributional Robustnesswith Principled Adversarial Training(基于 Wasserstein-ball构造uncertainty set,用于adversarial robustness)
  3. ICML 2018 Oral Does Distributionally Robust Supervised Learning Give Robust Classifiers?(DRO就一定比ERM好?不一定!必须引入额外信息)
  4. NeurIPS 2019 Distributionally Robust Optimization and Generalization in Kernel Methods(本文使用MMD(maximummean discrepancy)对uncertainty set进行建模,得到了MMD DRO)
  5. EMNLP 2019 Distributionally Robust Language Modeling(Coarse-grained mixture models在NLP中的经典案例)

Causality

2021

Old but Important

  1. JSTOR (Peters)Causal inference by using invariant prediction: identification and confidence intervals.
  2. ICML 2015 [Towards a Learning Theory of Cause-Effect Inference](使用kernel mean embedding和分类器进行casual inference )
  3. IJCAI 2020 (CMU) Causal Discovery from Heterogeneous/Nonstationary Data
  4. Causality 基础概念汇总

Optimization/GNN/Energy/Generative/Others

2021

  1. ICML An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming
  2. NeurIPS Deep Structural Causal Models for Tractable Counterfactual Inference

Old but Important

  1. ICML 2018 Bilevel Programming for Hyperparameter Optimization and Meta-Learning(用bi-level programming建模超参数搜索与meta-learning)
  2. NeurIPS Energy-based Out-of-distribution Detection

LTH (Lottery Ticket Hypothesis)

  1. NeurIPS 2020: The Lottery Ticket Hypothesis for Pre-trained BERT Networks (彩票假设用于BERT fine-tune))
  2. ICML 2021 Oral: Can Subnetwork Structure be the Key to Out-of-Distribution Generalization? (彩票假设用于OOD泛化)
  3. CVPR 2021: The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models (彩票假设用于视觉模型预训练)

Generative Model (mainly diffusion model)

  1. Estimation of Non-Normalized Statistical Models by Score Matching(使用分步积分(Score Matching)的方法解决非归一化分布的估计问题)
  2. UAI 2019 Sliced Score Matching: A Scalable Approach to Density and Score Estimation(将高维的梯度场沿随即方向投影到一维的标量场再进行score-macthing)
  3. NeurIPS 2019 Oral Generative Modeling by Estimating Gradients of the Data Distribution(通过添加噪声的方法,增强Langevin MCMC对低概率密度区域的建模能力)
  4. NeurIPS 2020 improved techniques for training score-based generative models(对score-based generative model失败案例的分析和改进,生成能力开始媲美GAN)
  5. NeurIPS 2020 Denoising Diffusion Probabilistic Models(除VAE, GAN, FLOW外又一生成范式)
  6. ICLR 2021 Outstanding Paper Award Score-Based Generative Modeling through Stochastic Differential Equations
  7. Arxiv 2021 Diffusion Models Beat GANs on Image Synthesis(Diffusion Models在图像和合成上超越GAN)
  8. Arxiv 2021 Variational Diffusion Models

Prompts

  1. ACL 2021 WARP: Word-level Adversarial ReProgramming(Continuous Prompt开篇之作)
  2. Arxiv 2021 StanfordPrefix-Tuning: Optimizing Continuous Prompts for Generation(Continuous Prompt用于NLG的各种任务)
  3. Arxiv 2021 GoogleThe Power of Scale for Parameter-Efficient Prompt Tuning
  4. Arxiv 2021 PrincetonFactual Probing Is [MASK]: Learning vs. Learning to Recall
  5. Arxiv 2021 DeepMindMultimodal Few-Shot Learning with Frozen Language Models

综述

  1. 综述:基于能量的模型

About

一些domain generalization相关的阅读笔记

License:MIT License