Implementation of our paper entitiled FAMINet: Learning Real-time Semi-supervised Video Object Segmentation with Steepest Optimized Optical Flow published in TIM. This code is mainly based on frtm-vos. Thanks for their provided codes.
Ubuntu 16.04
Python 3.7
Pytorch 1.7
sudo apt install ninja-build
pip install scipy scikit-image tqdm opencv-python easydict
DAVIS dataset is from the DAVIS benchmark: https://davischallenge.org/davis2017/code.html. Users can directly download DAVIS2017 from https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-trainval-480p.zip.
Youtube-VOS dataset is from the Youtube-VOS benchmark: https://youtube-vos.org/dataset/.
After downloading the overall datasets, set the corresponding dataset path in evaluate.py
and train.py
, e.g.:
davis="./DAVIS", # DAVIS dataset root
yt="/data3/YouTubeVOS", # YouTubeVOS root
output="./results", # output results
python evaluate.py --model model_path --fast --dset ytval # YouTubeVos
python evaluate.py --model model_path --fast --dset dv2016val # DAVIS 2016
python evaluate.py --model model_path --fast --dset dv2017val # DAVIS 2017
We provided our model FAMINet-2F and FAMINet-3F for reference:
Name | Backbone | Weights |
---|---|---|
FAMINet-2F, FAMINet-3F | ResNet18 | Download |
python train.py name --ftext resnet18 --dset all --dev gpu_id
name
experiment name.
dset
dataset used for training, e.g., DAVIS, Youtube2018.