lishanian / machine-learning-notes

机器学习笔记

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

简介

作者:hschen
QQ:357033150
邮箱:hschen0712@gmail.com

此笔记主要总结自一些论文、书籍以及公开课,由于本人水平有限,笔记中难免会出现各种错误,欢迎指正。
由于Github渲染.ipynb文件较慢,可以用nbviewer加快渲染:点此加速

目录

1.CS229课程笔记

2.PRML读书笔记

3.[徐亦达机器学习笔记](YiDaXu ML/)

  • [采样算法系列1](YiDaXu ML/sampling-methods-part1.ipynb)
  • [EM算法](YiDaXu ML/EM-review.ipynb)
  • [变分推断](YiDaXu ML/variational-inference.ipynb)
  • [高斯分布的变分推断](YiDaXu ML/variational-inference-for-gaussian-distribution.ipynb)
  • [指数分布族](YiDaXu ML/exponential-family.ipynb)
  • [指数分布族的变分推断](YiDaXu ML/exponential-family-variational-inference.ipynb)

4.[机器学习笔记](Machine Learning/)

  • [xgboost笔记](Machine Learning/xgboost-notes)
    • [1. xgboost的安装](Machine Learning/xgboost-notes/xgboost-note1.ipynb)
  • [softmax分类器](Machine Learning/softmax-crossentropy-derivative.ipynb)
  • [用theano实现softmax分类器](Machine Learning/implement-softmax-in-theano.ipynb)
  • [用SVD实现岭回归](Machine Learning/svd-ridge-regression.ipynb)
  • [SVD系列1](Machine Learning/svd1.ipynb)

5.[深度学习笔记](Deep Learning/)

  • [theano笔记](Deep Learning/theano-notes)

    • [2. theano简单计算](Deep Learning/theano-notes/part2-simple-computations.ipynb)
    • [3. theano共享变量](Deep Learning/theano-notes/part3-shared-variable.ipynb)
    • [4. theano随机数](Deep Learning/theano-notes/part4-random-number.ipynb)
    • [6. theano的scan函数](Deep Learning/theano-notes/part6-scan-function.ipynb)
    • [7. theano的dimshuffle](Deep Learning/theano-notes/part7-dimshuffle.ipynb)
  • [mxnet笔记](Deep Learning/mxnet-notes)

    • [1. Win10下安装MXNET](Deep Learning/mxnet-notes/1-installation.ipynb)
    • [2. MXNET符号API](Deep Learning/mxnet-notes/2-mxnet-symbolic.ipynb)
    • [mxnet中的运算符](Deep Learning/mxnet-notes/operators-in-mxnet.ipynb)
    • [mshadow表达式模板教程](Deep Learning/mxnet-notes/mshadow-expression-template-tutorial.ipynb)
  • [keras笔记](Deep Learning/keras-notes)

    • [keras心得](Deep Learning/keras-notes/keras-tips.ipynb)
  • [windows下安装caffe](Deep Learning/install-caffe-in-windows.ipynb)

  • [BP算法矩阵形式推导](Deep Learning/back-propagation-in-matrix-form.ipynb)

  • [随时间反向传播算法数学推导过程](Deep Learning/back-propagation-through-time.ipynb)

  • [用numpy实现RNN](Deep Learning/rnn-numpy.ipynb)

  • [随机矩阵的奇异值分析](Deep Learning/singular-value-of-random-matrix.ipynb)

About

机器学习笔记


Languages

Language:Jupyter Notebook 100.0%