简介
作者:hschen
QQ:357033150
邮箱:hschen0712@gmail.com
此笔记主要总结自一些论文、书籍以及公开课,由于本人水平有限,笔记中难免会出现各种错误,欢迎指正。
由于Github渲染.ipynb
文件较慢,可以用nbviewer加快渲染:点此加速
目录
2.PRML读书笔记
3.[徐亦达机器学习笔记](YiDaXu ML/)
- [采样算法系列1](YiDaXu ML/sampling-methods-part1.ipynb)
- [EM算法](YiDaXu ML/EM-review.ipynb)
- [变分推断](YiDaXu ML/variational-inference.ipynb)
- [高斯分布的变分推断](YiDaXu ML/variational-inference-for-gaussian-distribution.ipynb)
- [指数分布族](YiDaXu ML/exponential-family.ipynb)
- [指数分布族的变分推断](YiDaXu ML/exponential-family-variational-inference.ipynb)
4.[机器学习笔记](Machine Learning/)
- [xgboost笔记](Machine Learning/xgboost-notes)
- [1. xgboost的安装](Machine Learning/xgboost-notes/xgboost-note1.ipynb)
- [softmax分类器](Machine Learning/softmax-crossentropy-derivative.ipynb)
- [用theano实现softmax分类器](Machine Learning/implement-softmax-in-theano.ipynb)
- [用SVD实现岭回归](Machine Learning/svd-ridge-regression.ipynb)
- [SVD系列1](Machine Learning/svd1.ipynb)
5.[深度学习笔记](Deep Learning/)
-
[theano笔记](Deep Learning/theano-notes)
- [2. theano简单计算](Deep Learning/theano-notes/part2-simple-computations.ipynb)
- [3. theano共享变量](Deep Learning/theano-notes/part3-shared-variable.ipynb)
- [4. theano随机数](Deep Learning/theano-notes/part4-random-number.ipynb)
- [6. theano的scan函数](Deep Learning/theano-notes/part6-scan-function.ipynb)
- [7. theano的dimshuffle](Deep Learning/theano-notes/part7-dimshuffle.ipynb)
-
[mxnet笔记](Deep Learning/mxnet-notes)
- [1. Win10下安装MXNET](Deep Learning/mxnet-notes/1-installation.ipynb)
- [2. MXNET符号API](Deep Learning/mxnet-notes/2-mxnet-symbolic.ipynb)
- [mxnet中的运算符](Deep Learning/mxnet-notes/operators-in-mxnet.ipynb)
- [mshadow表达式模板教程](Deep Learning/mxnet-notes/mshadow-expression-template-tutorial.ipynb)
-
[keras笔记](Deep Learning/keras-notes)
- [keras心得](Deep Learning/keras-notes/keras-tips.ipynb)
-
[windows下安装caffe](Deep Learning/install-caffe-in-windows.ipynb)
-
[BP算法矩阵形式推导](Deep Learning/back-propagation-in-matrix-form.ipynb)
-
[随时间反向传播算法数学推导过程](Deep Learning/back-propagation-through-time.ipynb)
-
[用numpy实现RNN](Deep Learning/rnn-numpy.ipynb)
-
[随机矩阵的奇异值分析](Deep Learning/singular-value-of-random-matrix.ipynb)